

PRECISION | COMMUNICATION | ACCOUNTABILITY

OVERLAND FLOW REPORT

PROPOSED COMMERCIAL DEVELOPMENT 393 PACIFIC HIGHWAY BELMONT NSW

Prepared For: Kaufland c/- Willow Tree Planning Suite 4, Level 7 100 Walker Street NORTH SYDNEY NSW 2060

> Prepared by: Costin Roe Consulting Level 1, 8 Windmill Street WALSH BAY NSW 2000

> > Rev: A

DOCUMENT VERIFICATION

Project Title	Proposed Commercial Development	
Document Title	Overland Flow Report	
Project No.	Co13802.00	
Description	Overland flow assessment for new commercial development.	
Client Contact	Ms Rachel Streeter, Willow Tree Planning	

	Name	Signature
Prepared by	Mitchell Cross	
Reviewed by	Mark Wilson	
Issued by	Mitchell Cross	
File Name	13802.00-02.rpt.docx	

Document History

Date	Revision	Issued to	No. Copies
15 Mar. 2019	А	Ms Rachel Streeter, Willow Tree Planning	PDF

TABLE OF CONTENTS

1.	INTRODUCTION	1
2.	SITE CHARACTERISTICS	2
2.1.	Site Description	2
2.2.	Proposed Development	4
3.	STUDY OBJECTIVES & METHODOLOGY	6
3.1.	Study Objectives	6
3.2.	Study Methodology	6
3.3.	Report Format	7
4.	REVIEW OF AVAILABLE DATA	8
4.1.	Survey	8
4.2.	Bunnings Design Drawings	8
4.3.	Council Flood Study	8
5.	CATCHMENT INVESTIGATION & HYDROLOGY	9
5.1.	Hydrological Assessment of Existing Catchment	9
5.2.	Post Developed Scenario Definition	12
6.	HYDRODYNAMIC MODEL DEVELOPMENT	13
6.1.	Extent and Topography	13
6.2.	Boundary Conditions	13
6.3.	Channel and Floodplain Roughness	14
7.	FLOOD MODELLING RESULTS	16
7.1.	Pre Development Scenario Results	16
7.2.	Post Development Scenario Results	17
8.	CONCLUSION	19
9.	REFERNCES	20

APPENDICES

1. INTRODUCTION

Costin Roe Consulting Pty Ltd (CRC) has been commissioned by Kaufland, via Willow Tree Planning, to prepare this Overland Flow Report in support of a planning application submission for the proposed development site. This report analyses flooding impacts to the existing commercial facility at 393 Pacific Highway, Belmont and a proposed redevelopment of the site. The 4.3 Ha parcel of land (*"Site"*) comprises an existing Bunnings Warehouse. The *"Study Area"* will extend locally around this parcel of land extending upstream and downstream sufficient distance to understand the hydraulic conditions in and around the proposed development area.

The overland flow assessment has been completed to confirm flood planning requirements for the property and potential future development associated with the proposed modification of zoning (including building levels and overland flow management and safety), and that the development will not cause any adverse affectation to upstream, downstream or adjoining properties. Overland flow from the upstream contributing catchments must be conveyed through the site, with no effect on upstream and downstream properties.

The scope and primary objectives of the overland flow assessment, are as follows:

- Determine the 1% Annual Exceedance Probability (AEP) Flood design flow generated by the contributing external catchment. Hydrology would be based on the upstream catchment as defined by a hydrological RAFTS model;
- Assess the pre-development overland flow path & underground trunk drainage culverts through the development site for the 1% AEP storm event;
- Assess the post-development impact of development over the site on the underground trunk drainage culvert & overland flow swale through the development site for the 1% AEP storm event so that potential impacts on the development can be assessed and mitigated; and
- Confirm that there is an effect on upstream, downstream and adjacent properties as a result of the development.

The *Study Area* is located within the bounds of the *Lake Macquarie City Council* (LMCC). There is currently no formal council flood study completed on the Belmont region in which the site is located.

As noted, this study will accompany a proposed modification in zoning over the Site. The site is currently zoned *B7 Business Park pursuant to Lake Macquarie Local Environmental Plan 2014* (LMLEP2014) and comprises a Bunnings Warehouse. The objective of the project is to allow the redevelopment of the site for a Kaufland supermarket, being a retail/grocery chain stocking up to 60,000 product lines. In accordance with the LMLEP2014 land use definitions, Kaufland would constitute a 'Shop' (being a type of 'Retail Premises'). Shops are currently not approved on the site, and therefore it is proposed to introduce an *Additional Permitted Use* (APU) for Shops within the B7 zone. This would require a Planning Proposal to amend LMLEP2014 and this report has been prepared in support of this submission.

2. SITE CHARACTERISTICS

2.1. Site Description

The site at 393 Pacific Highway (being Lot 101 in DP 1021186) is approximately 4.3 Ha in area. The site is a 'battle-axe' parcel of land and roughly rectangular in shape as shown in **Figure 2.1**. The development footprint is approximately 4.0 Ha of the overall property area.

The site is bounded on the north by residential properties, on the south by industrial properties and the west by existing commercial properties and the Pacific Highway. Land to the east of the site is currently undeveloped.

Figure 2.1 Locality Plan

The existing Bunnings was approved by LMCC in 1999 under DC/99/01634/1M A. As part of this approval, a drainage and overland flow design was produced by Michael Lockley & Associates. This design was obtained by Costin Roe Consulting from LMCC (refer **Appendix C**) and used as reference as part of this assessment. The design drawings show a three-cell box culvert, each cell being 3.3m wide by 1.5m high (refer **Figure 2.2**), is present on the western side of the property. This culvert system conveys flows from a series of concrete lined open channels and associated upstream contributing catchments (approx. 237.8 Ha) from the north-west corner of the property to the southwest. A large trapezoidal open channel (refer **Figure 2.3**) is located adjacent to the southern boundary of the site, conveying flow from the box culvert system and runoff from Lots 100, 103, 104 and 105 in an easterly direction to bushland east of the property. A smaller overland flow swale is present on the north and east of the property (refer **Figure 2.4**). This channel provides a flow path for water which may overtop the box culvert system at the north-east corner of the property along the northern boundary toward bushland on the east.

Figure 2.2. Existing Box Culverts

Figure 2.3. Existing Open Channel (south of building)

Figure 2.4. Existing Overland Flow Path (north side of property).

2.2. Proposed Development

The proposed development is for the construction of a grocery retail shop for Kaufland.

An indicative layout of the development has been produced and can be seen in Figure 2.2 below.

The development will include the following engineering components:

- Demolition of the existing Bunnings Warehouse building
- Earthworks to create flat pads for the proposed building.
- Stormwater drainage system based on a major/ minor design philosophy;
- Management of stormwater quality using a treatment train approach to pollutant loads on a developed catchment in accordance with councils load based pollutant reduction percentages; and
- Management of stormwater quantity by reducing post developed flow to pre-developed over the range of storms between the 20% AEP to the 1% AEP as per council policy by use/modification of the existing on-site detention basin.
- Maintenance of existing overland flow paths and trunk culvert system.

Figure 2.2 Architectural Plan

3. STUDY OBJECTIVES & METHODOLOGY

3.1. Study Objectives

The objectives of the Flood Study are to:

- Identify relevant flood-related information and requirements by searching all relevant data sources and council policy;
- Determine the likely extent and nature of flooding and identify potential hydraulic controls;
- Define existing catchment condition flood behaviours for mainstream flooding in the catchment with due consideration to upstream and downstream controls within the study area;
- Define design flood levels, and velocities for the catchment;
- Define the extent of flooding for the 1% AEP design storm;
- Confirm flood planning requirements for the development;
- Confirm the potential for cumulative effects of possible filling proposals in that area is minimal;
- Confirm the development potential of surrounding properties is not adversely affected by the filling proposal;
- Confirm the flood liability of buildings on surrounding properties is not increased; and
- Confirm no local drainage flow/runoff problems are created by the filling.

3.2. Study Methodology

A numerical hydraulic modelling tool developed a model to convert runoff hydrographs into water levels and velocities throughout the study area. The model simulates the hydraulic behaviour of the water within the study area by accounting for flow in the major channels as well as the potential for overland flow paths, which develop when the capacity of the channel is exceeded. It relies on boundary conditions which include the runoff hydrographs and appropriate downstream boundary level.

The modelling has been undertaken in two stages (as discussed below) and this report provides details and summary of the pre & post development stages of the modelling.

Stage 1 – Pre Development

- Build of a 2D hydrodynamic flood model of the existing overland flow channel & trunk drainage culverts through the proposed site for the existing scenario;
- Modelling has been performed using the TUFLOW modelling engine with the open channels and overbank areas being modelled in 2D, and the existing underground trunk drainage culverts modelled as 1D elements;
- Hydrology determined via rain on grid modelling;
- Modelling of the 1% AEP storm event for the existing site with validation being completed against the design flood levels as per the Michael Lockley & Associates design drawings for the existing Bunnings Facility;
- The Digital Terrain Model (DTM) used in the modelling will be based on survey information received from Positive Survey Solutions and ALS survey information.

Stage 2 – Post Development

- Revision of the Stage 1 model to include the proposed development;
- Post development scenario testing and analysis of differences in flood levels, velocity and general hydraulics against the pre development scenario; and
- Confirmation of the effect on surrounding properties as a result of development.

3.3. Report Format

Section 4 of the report discusses the content and source of relevant data which has been utilised in the study. This section describes relevant flood studies and available historical information and also provides details of the survey used to establish the DTM used in the analysis.

Section 5 discusses the catchment characteristics the hydrological information used in the study.

Section 6 discusses the development of the hydraulic model including establishment of the DTM, boundary conditions, validation, sensitivity analysis and subsequent use for design rainfall events and development scenarios.

Section 7 provides the results of the design flood estimation for the catchment.

Section 8 summarises the results of the assessment and provides discussion on the various aspects of the results while Section 8 provides concluding remarks to the overall study.

A number of figures are included in **APPENDIX A** to illustrate the study results.

APPENDIX B includes the existing site survey, **APPENDIX C** the civil designs included in the Bunnings development approval and **APPENDIX D** includes council flood information certificate.

4. **REVIEW OF AVAILABLE DATA**

Data has been obtained from a number of sources and includes information required for input to the numerical models, together with information required for validation of model results and the adequate representation and presentation of those results.

4.1. Survey

Survey is required to define the physical attributes of the floodplain topography including the creek cross sections and the associated floodplain levels.

The pre development scenario survey has been compiled based information ALS Survey compiled by the NSW Department of Land and Property Information, and survey information provided by Positive Survey Solution. The survey information has been used to define the existing overland flow path cross section and features.

The proposed site levels, as defined by the architectural layout were integrated into the Post Development model by inputting an inactive 2D area to simulate filling above the 1% AEP flood level.

These surveys and surfaces were used as the basis for the digital terrain model (DTM) used in the hydraulic modelling of the pre and post development scenario respectively.

4.2. Bunnings Design Drawings

The design drawings for the existing Bunnings facility including the design water levels for the 1% AEP flood level. The drawings completed by Michael Lockley and associates provide 1% AEP flood levels for the underground box culverts and southern drainage channel.

4.3. Council Flood Study

There is currently no formal council flood study for the Belmont region.

A flooding certificate was obtained from LMCC (refer **APPENDIX D**) however this did not provide any information relating to flooding in and around the site.

5. CATCHMENT INVESTIGATION & HYDROLOGY

5.1. Hydrological Assessment of Existing Catchment

There are three contributing catchments upstream to the north and west of the site that currently drain to the underground culvert system which runs through the property. A catchment plan has been prepared and included as **Figure 5.1**, and also included as drawing **CO13802.00-F07** in **Appendix A**. The three catchments have been broken up to smaller sub-catchments as shown in the figure and referenced below in **Table 5.1** to a total contributing upstream catchment of 237.8 Ha.

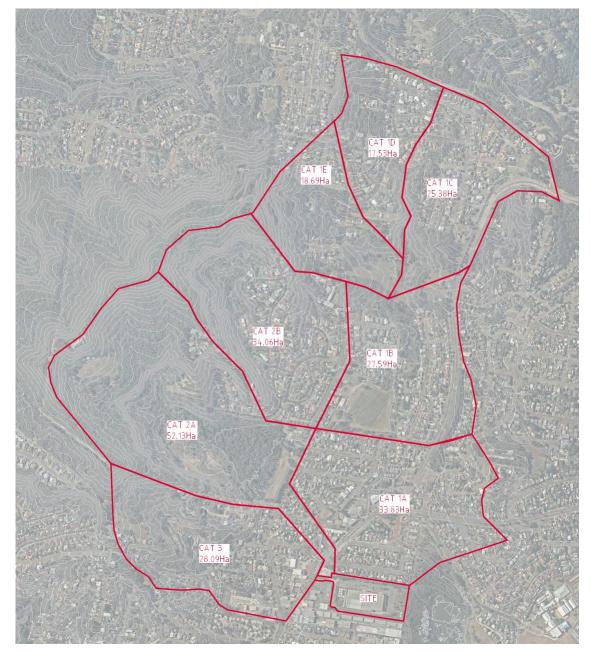


Figure 5.1. Upstream Contributing Catchment

Catchment Name	Area (Ha)
CatlA	33.83
Cat1B	27.59
Cat1C	25.38
Cat1D	17.53
CatlE	18.69
Cat1 Sub-total	123.5
Cat2A	52.13
Cat2B	34.06
Cat2 Sub-total	86.2
Cat3	28.09
Cat3 Sub-total	28.09
TOTAL CATCHMENT	237.8

Table 5.1. Catchment Areas

The contributing catchments comprise urban land and bushland. The urban land mainly comprising of low-density residential properties with surrounding dense bushland. The terrain is generally steep within undeveloped bushland areas, and moderate in developed areas. All areas are above the Lake Macquarie and Tasman Sea tidal flood level. Although the catchment is 237.8Ha, it would be considered reasonable small from a hydrological view meaning the catchment will be sensitive to short duration and high intensity storms, with overland flows similarly being short in duration and generally only present during and immediately after major rainfall events. This scenario is commonly referred to as flash flooding.

The Q100 Average Recurrence Interval (ARI) design peak flow, has been calculated using a conservative RAFTS model for the three main upstream catchments. The resultant hydrographs are shown in **Figures 5.2, 5.3 & 5.4.** The flows calculated have been used in both the predevelopment and post development model scenarios noting that runoff directly from the site has not been included in the overland flow assessment as it is minor in nature with respect to the much larger upstream runoff and also noting that there will be no change in impermeable surfaces over the site. Hence in relation to flood affectation and overland flow the site run-off will have negligible effect on these assessments.

Rainfall intensities and temporal patterns were derived from the Bureau of Meteorology online IFD tool and Australian Rainfall and Runoff (1987). The assessment resulted in the following flood hydrographs of the 1% AEP storm event, **Figures 5.2, 5.3, & 5.4** for the upstream catchment being defined and used in the TUFLOW modelling. The critical storm duration adopted is 120 minutes.

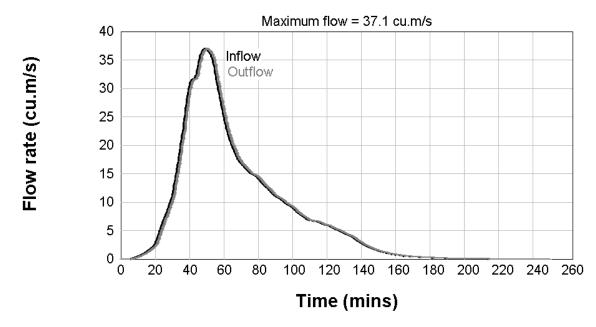


Figure 5.2. 1% AEP Hydrographs – Catchment 1

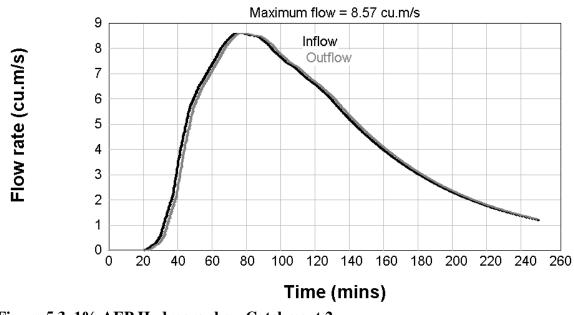


Figure 5.3. 1% AEP Hydrographs – Catchment 2

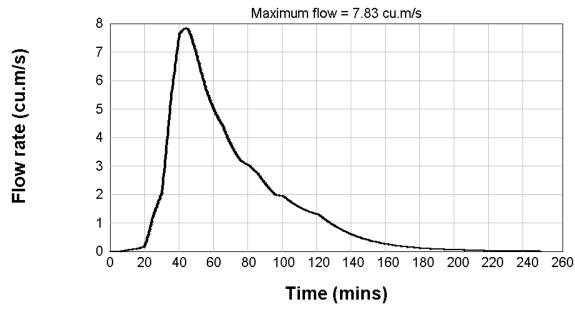


Figure 5.4. 1% AEP Hydrographs – Catchment 3

5.2. Post Developed Scenario Definition

A post development assessment has been completed. The post development conditions are based on the existing management measures approved for the existing Bunnings facility remain operational for the new shop. A summary of the measures has been provided below which is further detailing in **Section 7.2** of the report.

Management measures are as follows:

- Existing three cell box culverts remain;
- Existing open channel on the south of the development site remains; and
- The existing overland flow path on the north of the development site remains. The proposed development will need to ensure the levels of the new development are at least 400mm above the existing level of the flow path. This could be achieved through either filling of the site to the level as noted or providing a small wall or bund along the easement boundary line.

It is noted that the overland flow paths and systems described above will need to remain separate from any site stormwater management measures including site specific detention (OSD) measures and/ or water quality devices. It is noted that any site-specific stormwater management measures would be subject to a separate approval and stormwater management plan.

6. HYDRODYNAMIC MODEL DEVELOPMENT

6.1. Extent and Topography

Hydraulic modelling for this study was undertaken using the TUFLOW engine via the XPStorm-2D Software Platform. The modelled system is based on a 2D approach for the existing cases. The DTM was developed based on the ALS and site survey information & the proposed site design levels as discussed in Section 4 of this report.

The water levels and flows are resolved on a rectangular grid covering the area of interest. The TUFLOW model was set up with a 1m grid cell size, which is an appropriately small cell size to define overland flow behaviour, and more importantly, the difference in the behaviour between two modelled scenarios, through the area of interest.

The model extent is shown in **Figure 6.1**. Modelling has been completed along the study area, beginning approximately 100m upstream of the site and extending 100m to the south-east of the site.

6.2. Boundary Conditions

Inflow Boundaries

Design inflow hydrographs of upstream boundaries of the study area were based on hydrology as discussed in **Section 5** of this report.

The inflow boundaries have been positioned at distances of greater than 2.5 times the flow width from the subject property to ensure that any potential instabilities in the model that may be present at the inflow boundary entry point are resolved in the model prior to the study area. This is consistent with previously approved flooding applications and considered sufficient to produce accurate results for the effect of the development in relation to flooding of the study area.

Outflow Boundaries

The model extent has been continued for approximately 100m downstream of the study area to a point east of the study area. The downstream outflow boundary within the 2D domain has been modelled using the 'head-boundary' control to simulate continuous flow past the model extents, which is generally accepted practice in 2D flood modelling.

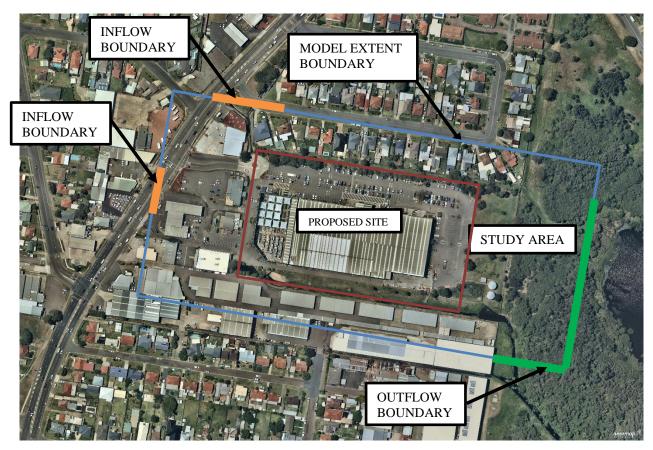


Figure 6.1. Model Extent and Model Boundary Locations

6.3. Channel and Floodplain Roughness

Roughness values adopted in the model are contained in **Table 6.1** below. These are consistent with typical Manning's 'n' values for respective land types.

Model Element	Description	Roughness Parameter Value
1	Grassed	0.040
2	Vegetated Channel	0.06
3	Roads	0.025
4	Dense Trees	0.080
5	Building	Inactive Area
6	Concrete Channel	0.012
7	Pond	0.001

Table 6.1. Adopted TUFLOW Element Roughness Values

A figurative representation of where the above roughness values are shown on Figure 6.2 below.

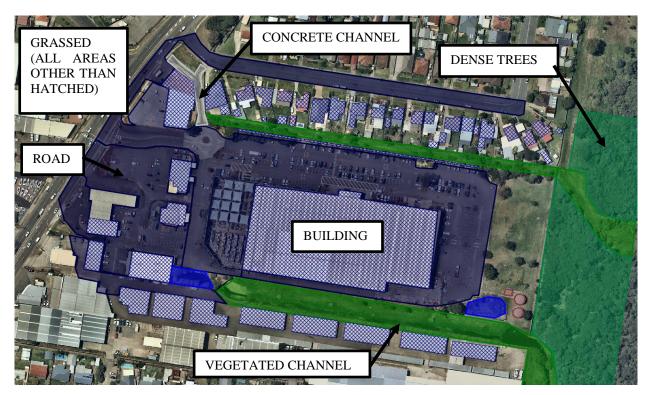


Figure 6.2. TUFLOW Element Roughness Locations

7. FLOOD MODELLING RESULTS

7.1. Pre Development Scenario Results

The predicted peak flood levels, depth and velocities were extracted from the hydrodynamic modelling and were used to generate water surface profiles and depth profiles for the 1% AEP storm event.

The predicted flood extent and depths for the 1% AEP event has been presented on drawing **CO13802.00-F01** and below as **Figure 7.1**. Reference to **Appendix A** should be made for water surface profiles and flood depth estimates for the 1% AEP storm event.

Drawing Co13802.00-F03 shows the pre-developed velocity output.



Figure 7.1. 1% AEP Flood Extent and Levels (pre-developed)

The predicted flood inundation can be seen to be generally consistent with the intention of the design by *Michael Lockley & Associates* included in the 1999 Bunnings Development Approval. The majority of the upstream flows being conveyed within the box culvert system to the southern open channel. A smaller overflow at the inflow to the box culverts activates the northern overland flow path where flow depths of 250-500mm are experienced. The existing facility is seen to be clear of the flood affectation and achieved flood immunity requirements.

Water levels in the channel to the south vary from RL 7.4m AHD at the west to RL 6.6m AHD on the east. Water levels through the northern overland flow path vary from RL 8.8m AHD on the west to RL 6.8m AHD at the east. It is noted that these levels are higher than the existing building (at RL 7.15m) however bunding to the channel has been made which achieved flood planning requirements hence the building level is not subject to the flood levels within the northern flow path.

Shallow flood water can be seen downstream of the property as a result of the confluence of flows and flat downstream constriction. These flows do not affect the existing or future facility.

It is noted that activation of the northern flow path is expected to occur in smaller intensity storms, including the 5% ARI. These flows are noted to be less than 250mm and to have DV factors well under general accepted minimum of 0.4.

Additional output for the 5% & 1% AEP storm events can also be found in Appendix A.

7.2. Post Development Scenario Results

At the time of writing, the detailed design and level grading through the site has not been completed. As such, the *Post Developed Scenario* has been modelled based on a block-out through the proposed development zone and maintaining the key overland flow measures as included in the current Bunnings development (i.e. box culverts, southern channel and northern overland flow path).

With reference to drawing **Co13802.00-F02 and Figure 7.2**, the post development flood extent and levels have been shown. Water level afflux (i.e. the change in water surface levels) has been shown on drawing **Co13802.00-F03** and **Figure 7.3**. Drawing **Co13802.00-F05** shows the pre-developed velocity output with velocity afflux on **Co13802.00-F06**.

The post-development flood output shows consistency between the pre and post development conditions. Minor afflux of 40-50mm is shown in an isolated area toward the north-east corner of the site within the easement on site and minor 10-20mm locally offsite. This minor increase is considered negligible in terms of affectation and generally within acceptable engineering change and modelling accuracy.

Overall the existing flow paths and flood management measures can be seen to effectively manage flows around the development and that the development has negligible impact on upstream downstream and adjoining properties.

Figure 7.2. 1% AEP Flood Extent and Levels (post-developed)

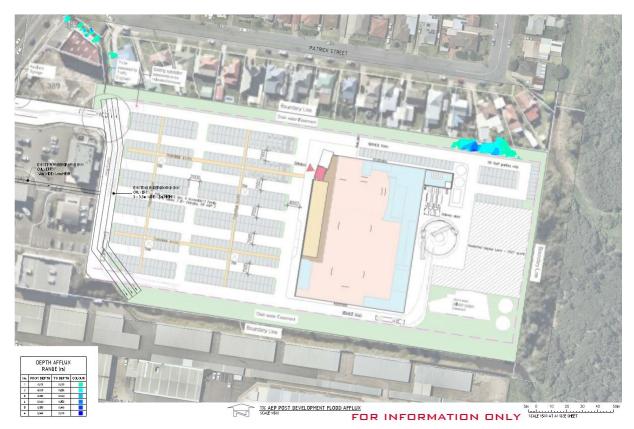


Figure 7.3. 1% AEP Flood Level Pre and Post development Afflux

Based on the current architectural layout, the floor level of the building will need to be set at a level of RL 7.5m to achieve 500mm freeboard to the 1% AEP flood level. Western parts of the site will need to be sited at RL 8.0m to achieve the required flood immunity or alternatively bunding to RL 8.0m could be provided.

As noted in previous sections of the report, a minimum bund or 400mm will be required on the north of the property to ensure the existing flow path achieved appropriate flood freeboard to the existing flow path post development.

Additional output for the 5% & 1% AEP storm events can also be found in Appendix A.

8. CONCLUSION

This *Overland Flow Report* has been prepared in support of a development at of 393 Pacific Highway Belmont North and associated planning application.

The Site has been identified by LMCC as being affected by flooding associated with overland flow from the upstream contributing catchments which total 237.8 Ha. Modelling has been undertaken to confirm that council's development control criteria has been met relating to the development of the land and the effect on the flooding as a result of the development. In particular the assessment focusses on the overflow at the existing culverts and surrounding flow paths.

A TUFLOW hydrodynamic flood model of the overland flow path was produced for the area surrounding the development for the purpose of scenario testing. The report provides a summary of the model build and results for the existing, pre-developed, and the proposed, post-developed condition over the land.

The development proposes to maintain existing flow management systems constructed as part of the Bunnings site in 1999. The report confirms these systems are able to convey the expected storm flows through and around the development site with negligible affectation to upstream, downstream and adjoining properties and meet LMCC DCP requirements.

Pre and post development flood elevation and flood depth plans have been produced to confirm the effect of the development on flooding. Comparison of the pre and post-development modelling (shown in the afflux plans) confirms that the development of the land can be made without adversely affecting upstream, downstream or adjacent properties.

Overall, the pre and post development flood scenario assessment provides favourable results which confirm there will be no effect on downstream or adjacent properties and the future development can move forward whilst achieving flood planning requirements and suitable freeboard to the expected 1% AEP flood level and extent.

9. **REFERENCES**

- Lake Macquarie City Council Development Control Plan.
- Landcom (2004). Managing Urban Stormwater Soils and Construction 4th Edition.
- NSW Government (2005). Floodplain Development Manual.

APPENDIX A

DRAWINGS AND FIGURES

(Figures represent predicted values at the peak of each event)

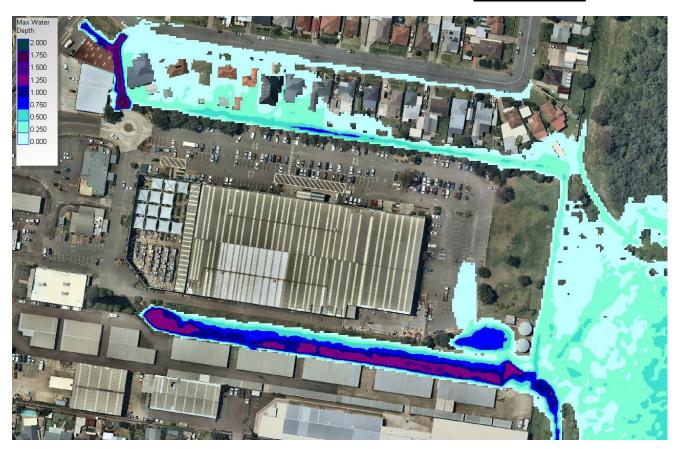


Figure A1 – 5% AEP Flood Depths (Pre-Development)

Figure A2 – 5% AEP Flood Levels (Pre-Development)

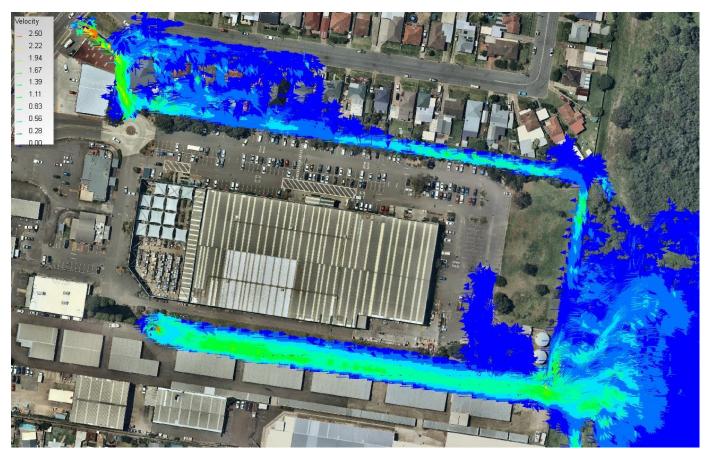


Figure A3 – 5% AEP Flood Velocity (Pre-Development)

Figure A4 – 5% AEP Flood Depth (Post Development)

Figure A5 – 5% AEP Flood Level (Post Development)



Figure A6 – 5% AEP Flood Velocity (Post Development)

Figure A7 – 1% AEP Flood Depth (Pre-Development)

Figure A8 – 1% AEP Flood Level (Pre-Development)

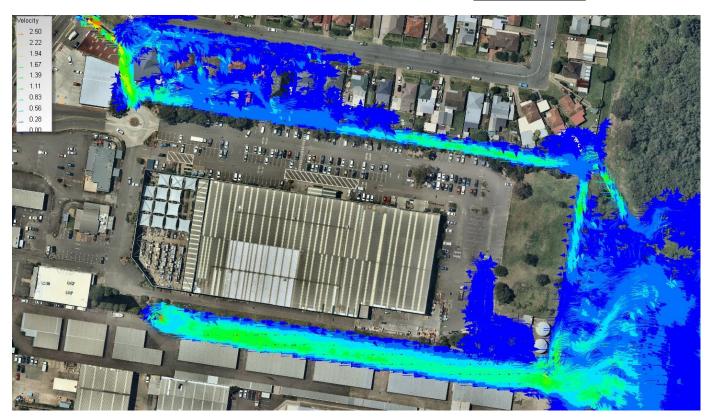


Figure A9 – 1% AEP Flood Velocity (Pre-Development)

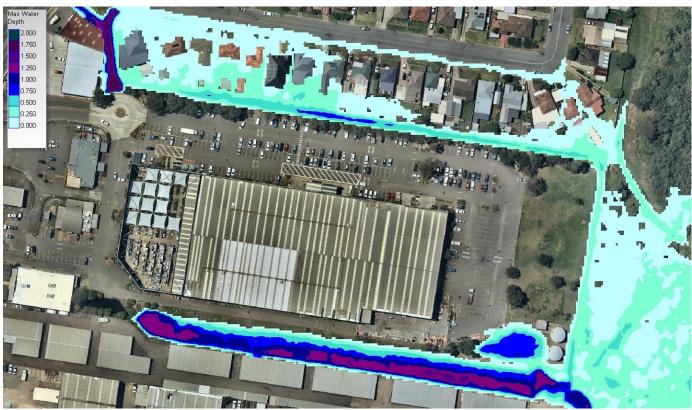
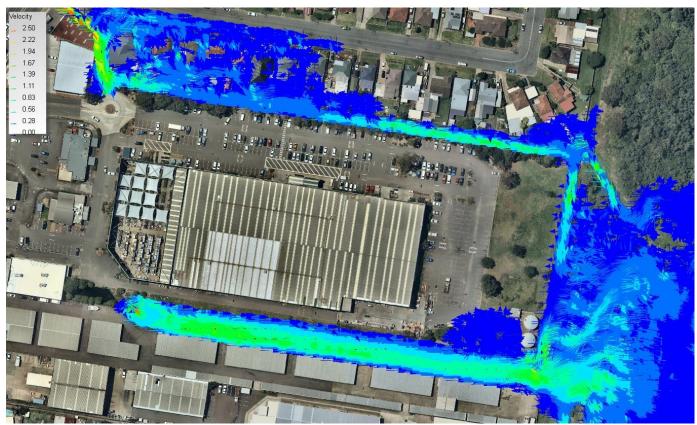
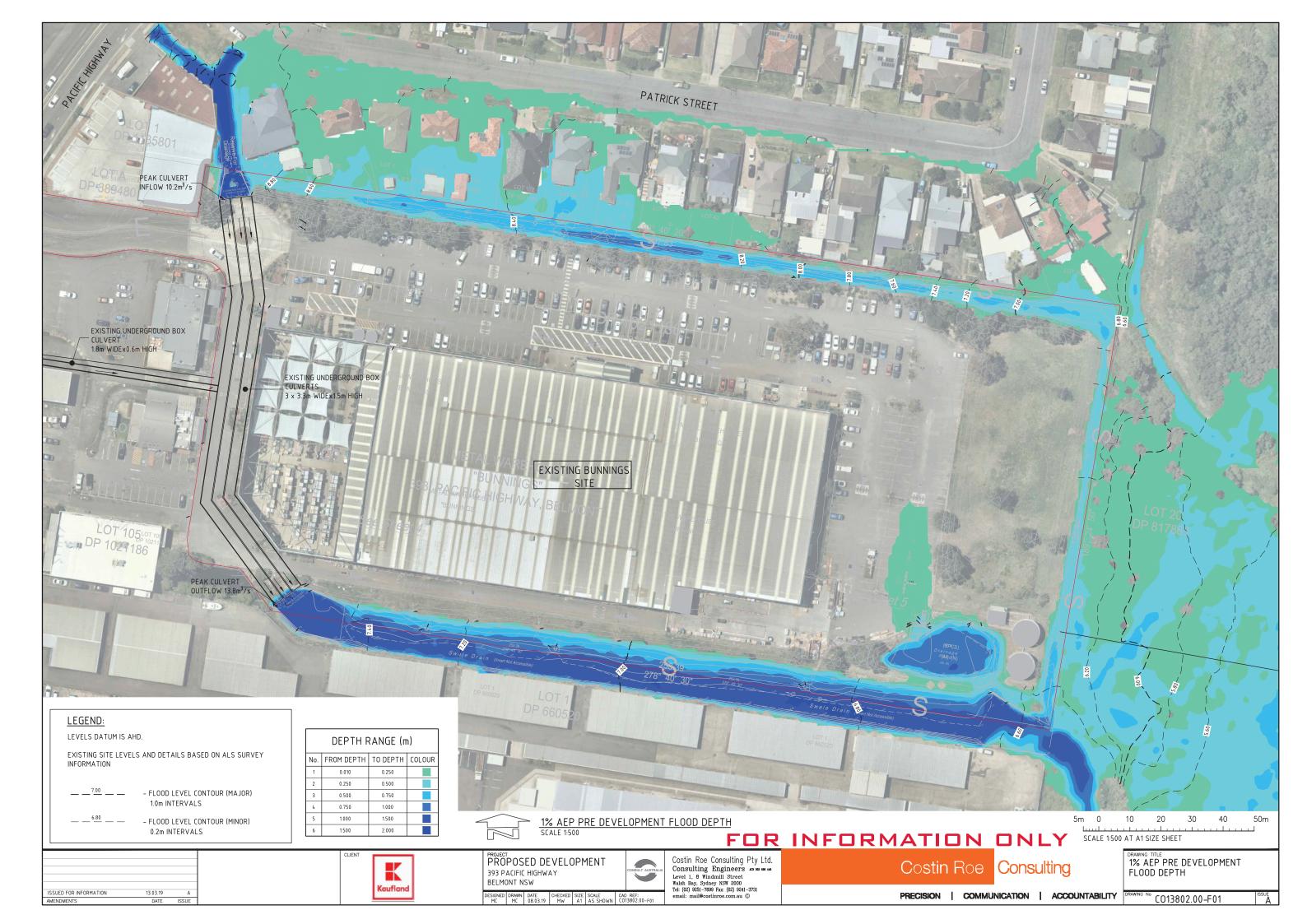
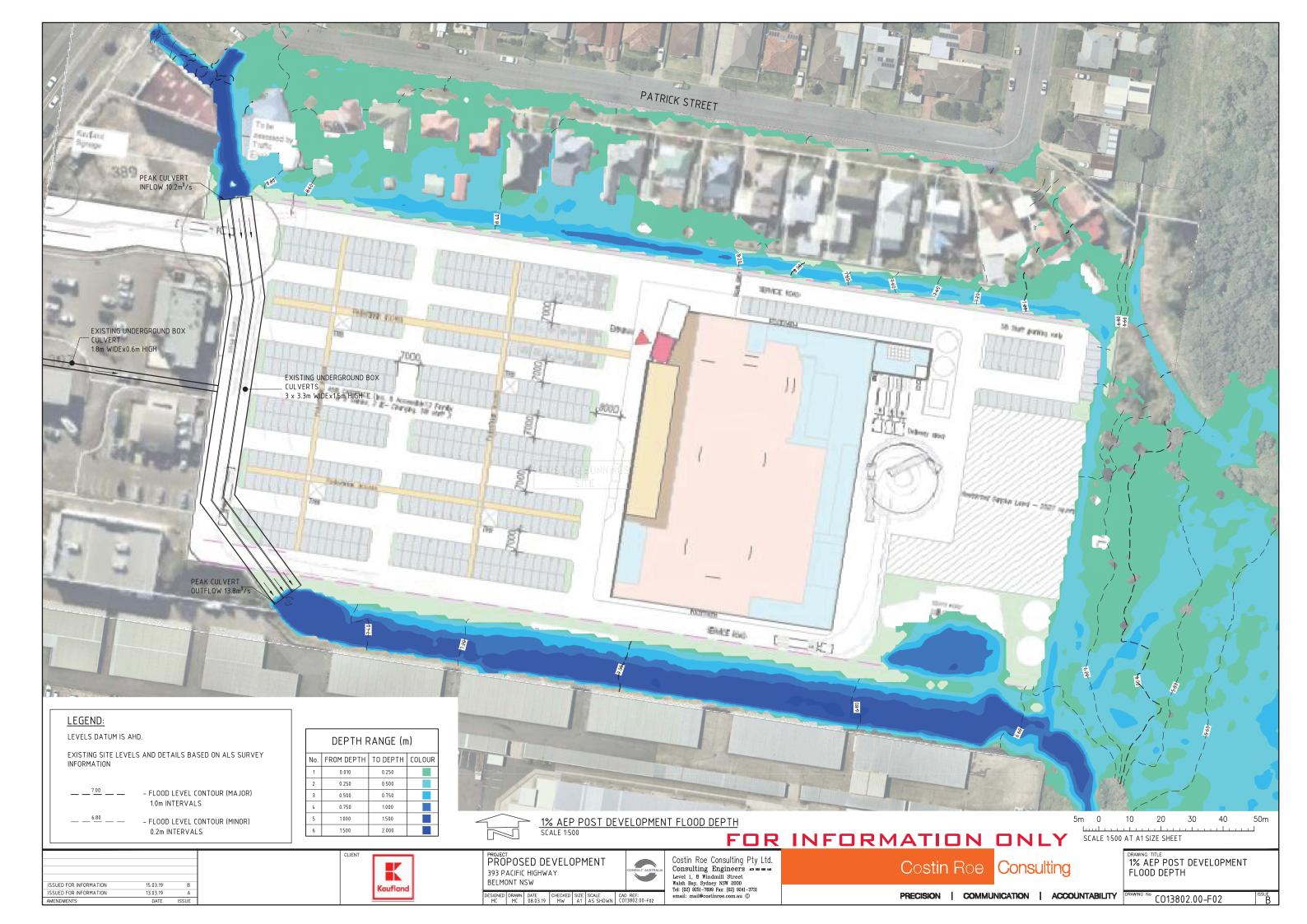
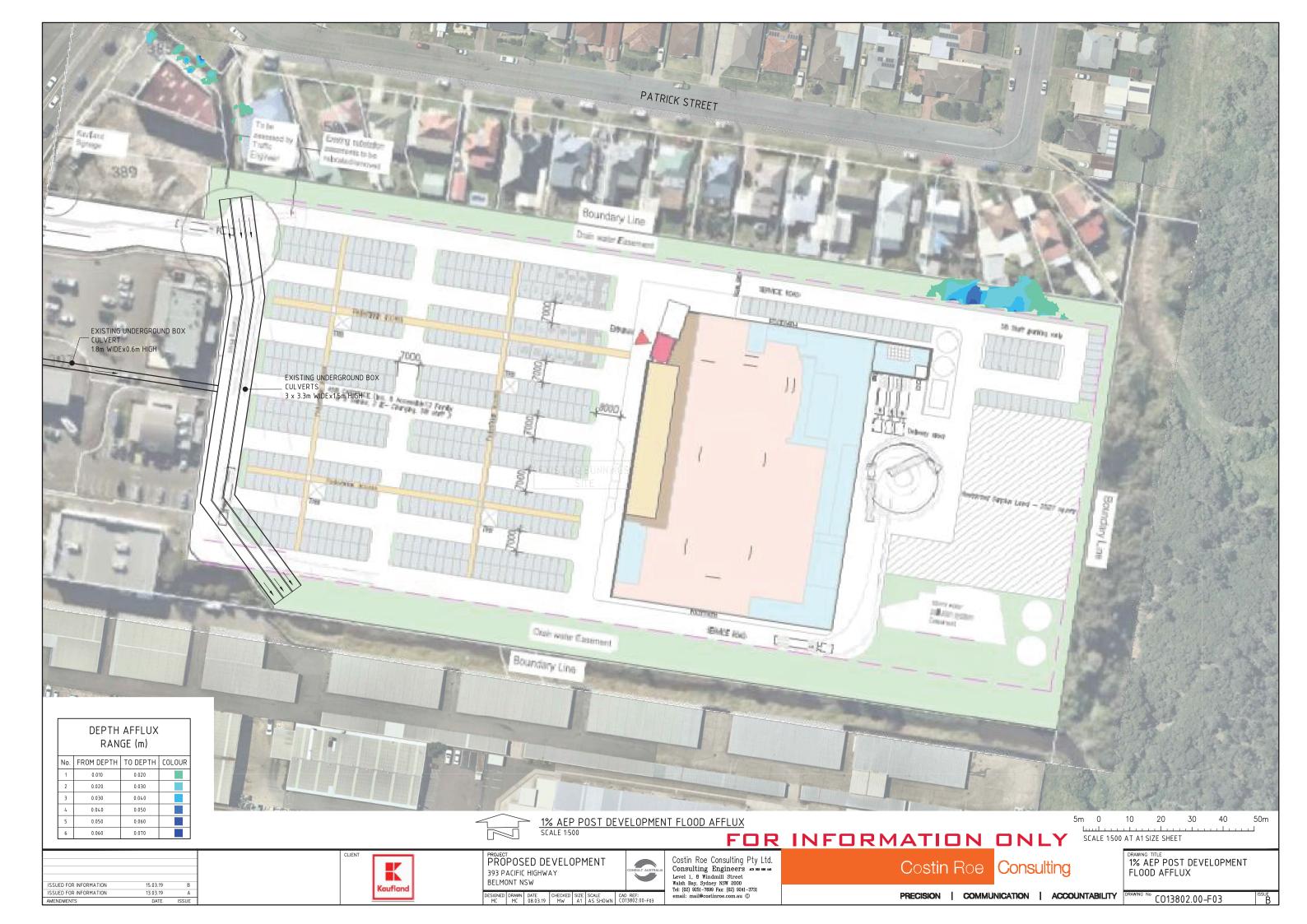
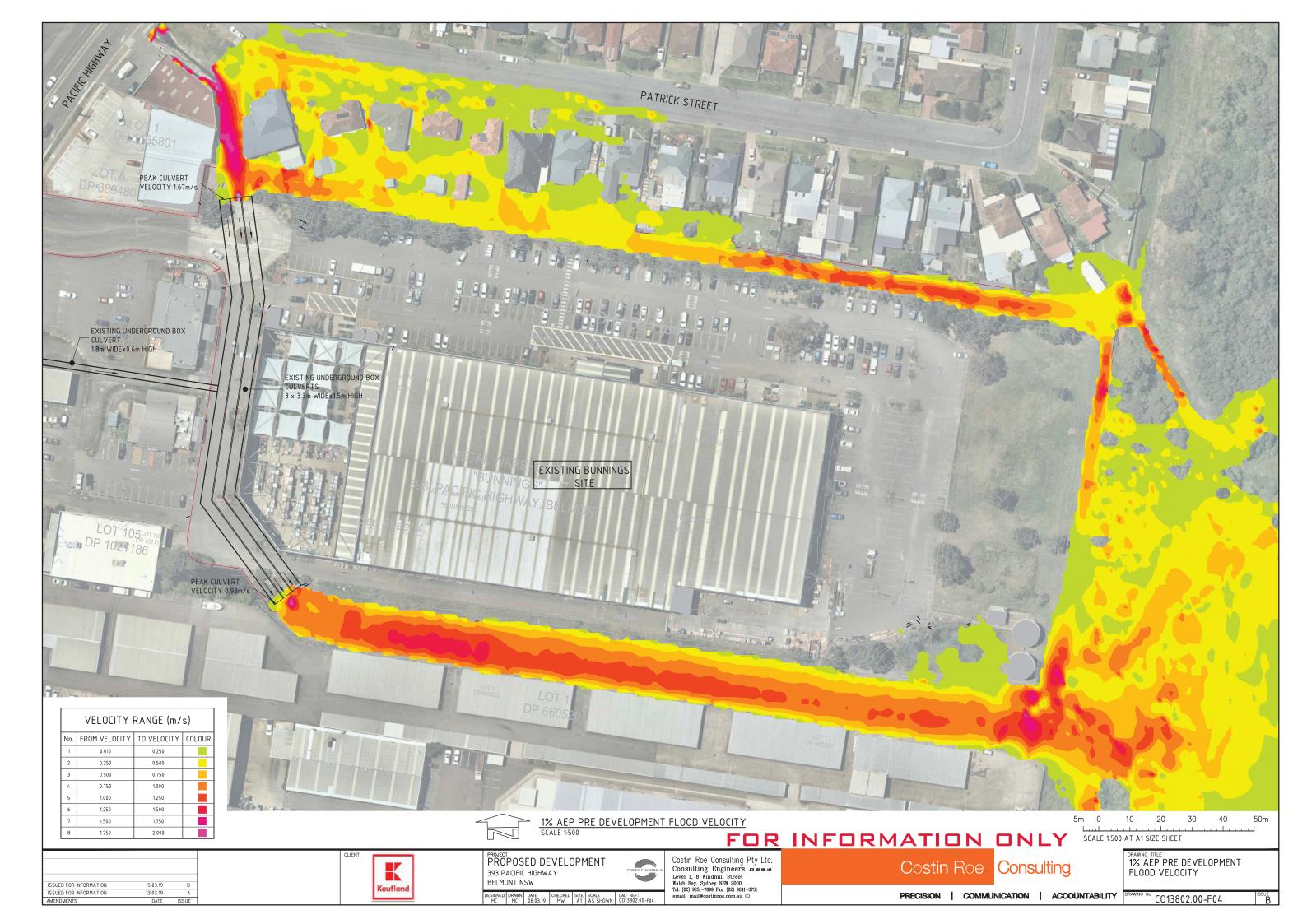
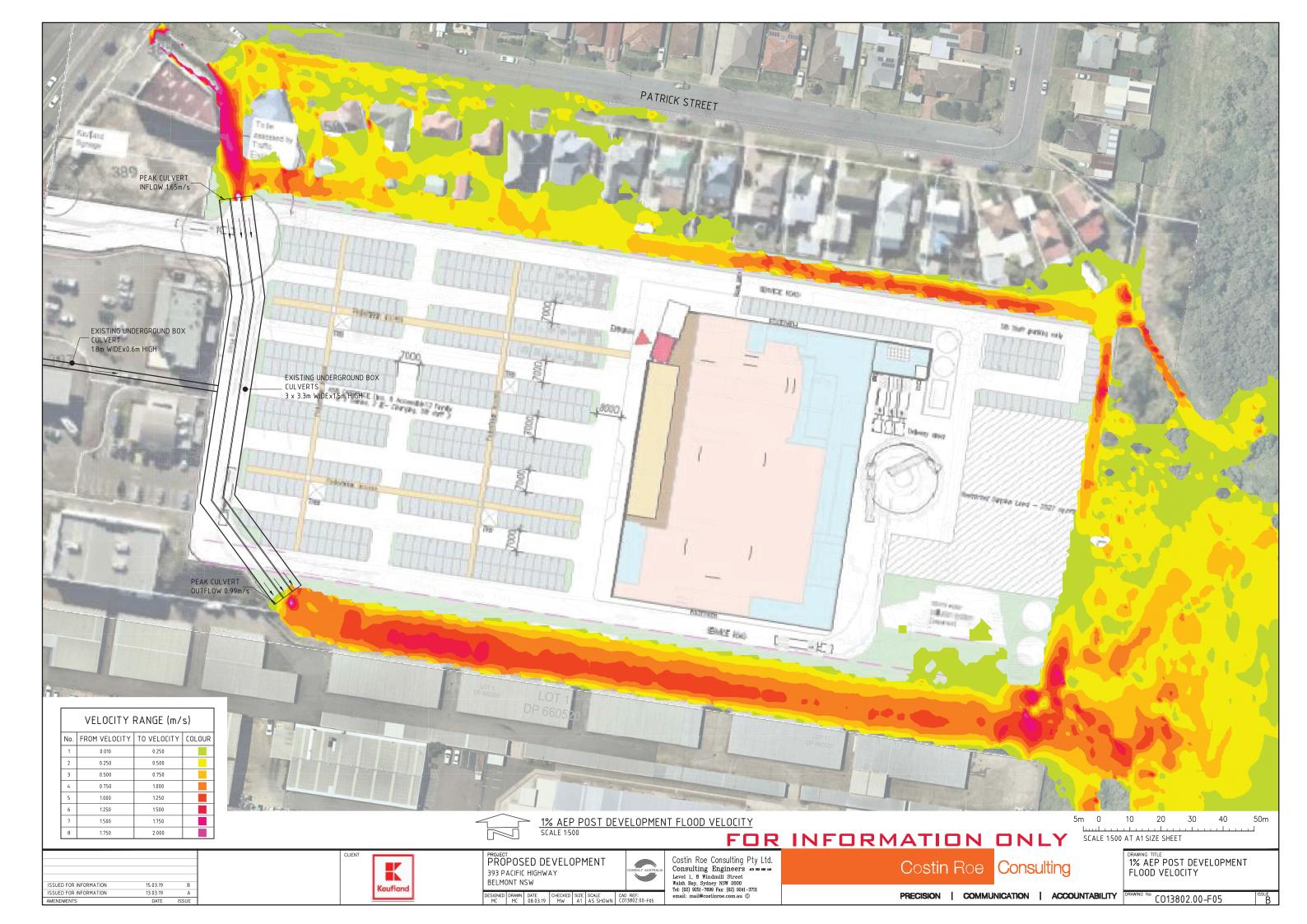
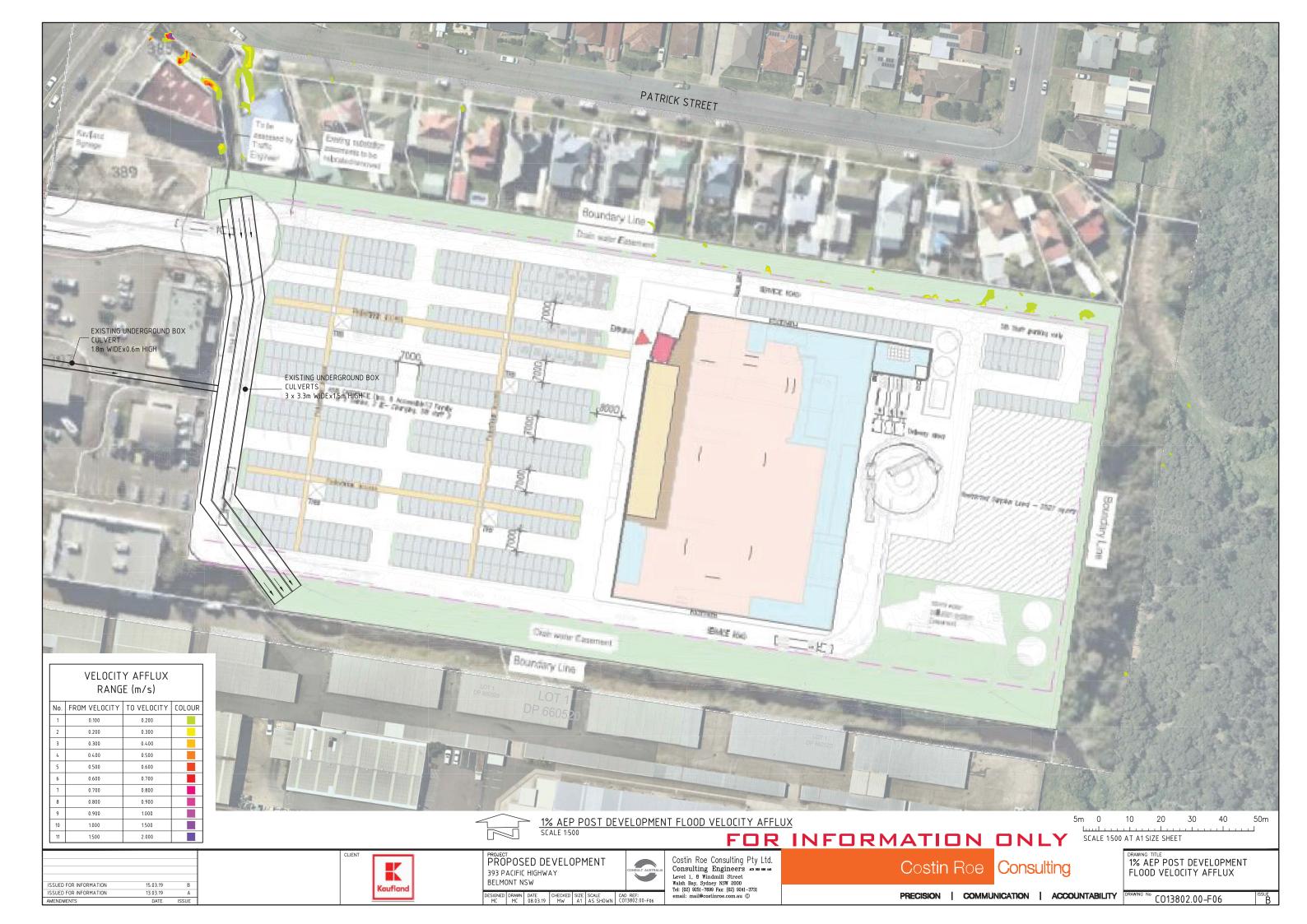


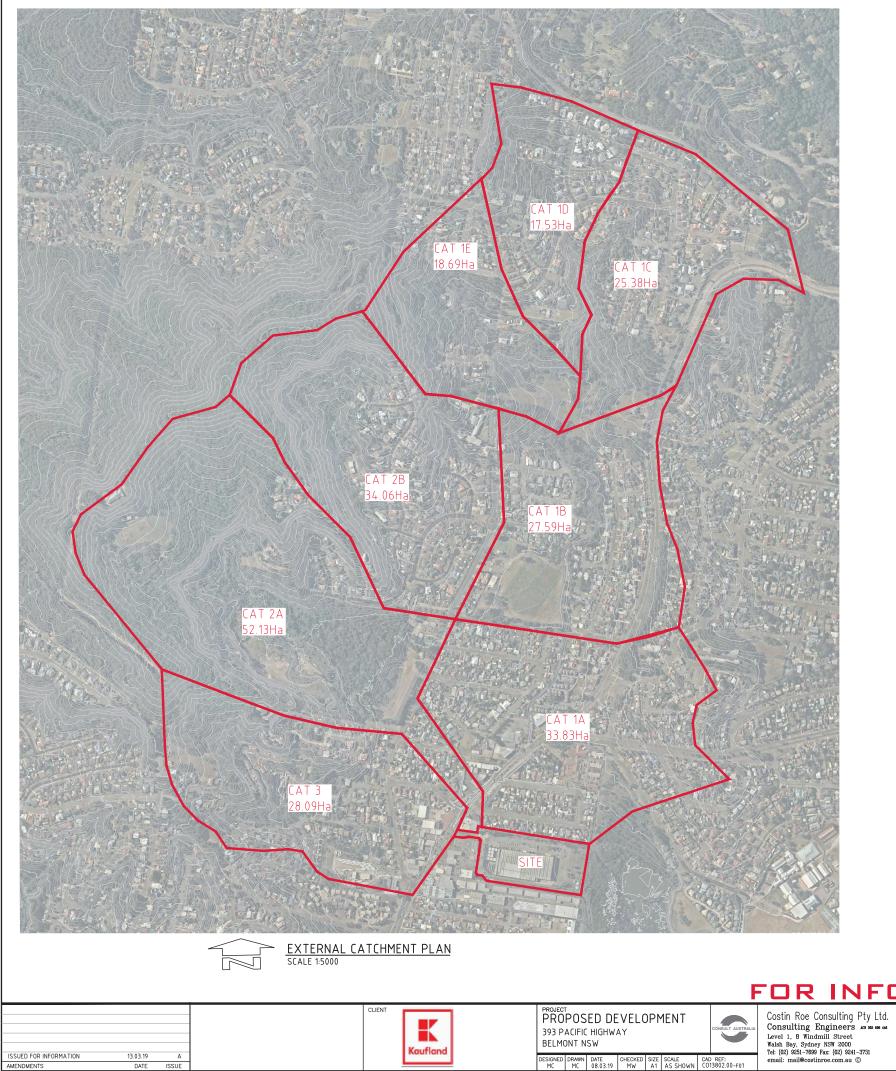
Figure A10 – 1% AEP Flood Depth (Post Development)

Figure A11 – 1% AEP Flood Level (Post Development)


Figure A12 – 1% AEP Flood Velocity (Post Development)





FOR INFORMATION ONL

Costin Roe

	00 200 300 400 500m AT A1 SIZE SHEET
Consulting	DRAWING TITLE EXTERNAL CATCHMENT PLAN
IUNICATION ACCOUNTABILITY	DRAWING № C013802.00-F07

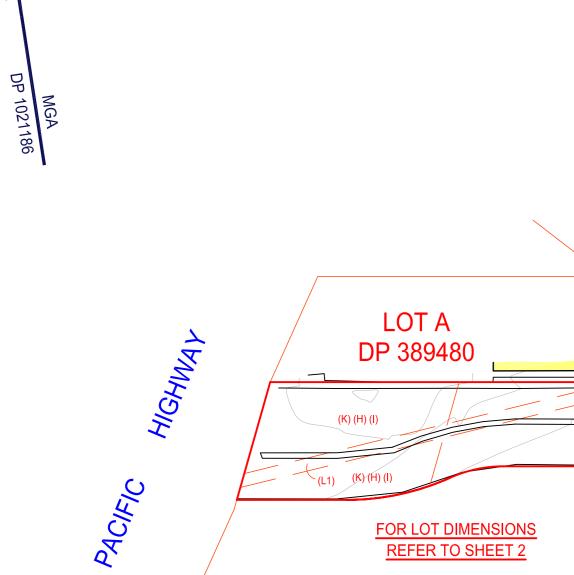
APPENDIX B

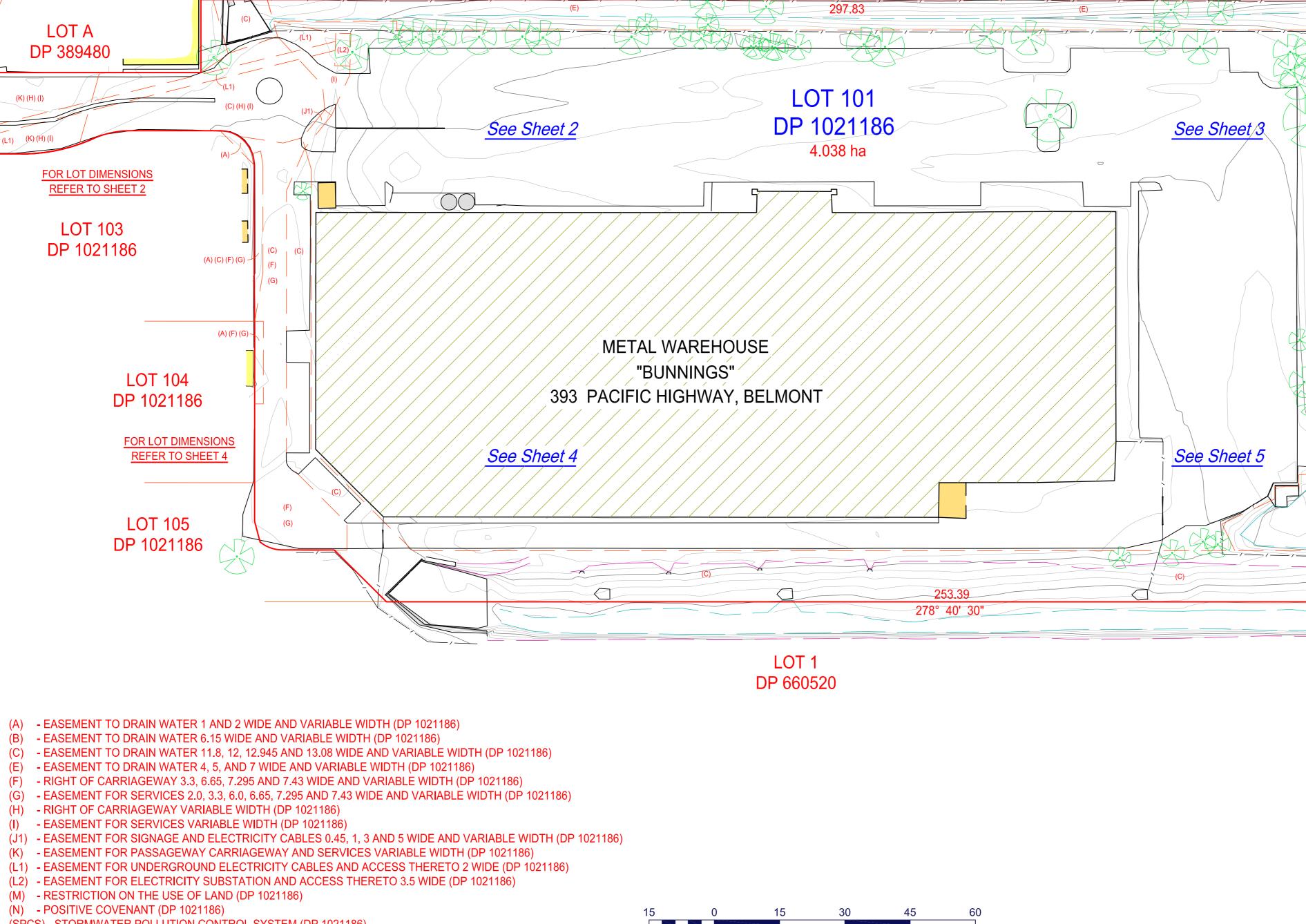
EXISTING SITE SURVEY

 Surveying and Spatial Information Regulation 2017. The boundaries have not been marked by this survey. 4. Spot levels and contours shown hereon are for design purposes only and may require confirmation prior to any excavation or construction. Contours have been derived from the spot levels shown and as such are indicative only. 5. Services shown hereon have been located by field survey of visible features only, unless otherwise noted. 6. Any underground services shown on this plan are indicative only and do not represent the number, size or depth of cables, pipes or conduits, unless otherwise noted. 7. Prior to and during any demolition, excavation or construction the designer and/or contractor must obtain a current search from "Dial Before You Dig". 8. These notes are an integral part of this plan. Reproduction of this plan, or any part of it, without these notes included in full will render the information invalid and not suitable for use. 	 (E) - EASEMENT TO DRAIN WATER 4, 5, AND 7 WIDE AND VARIABLE (F) - RIGHT OF CARRIAGEWAY 3.3, 6.65, 7.295 AND 7.43 WIDE AND V (G) - EASEMENT FOR SERVICES 2.0, 3.3, 6.0, 6.65, 7.295 AND 7.43 W (H) - RIGHT OF CARRIAGEWAY VARIABLE WIDTH (DP 1021186) (I) - EASEMENT FOR SERVICES VARIABLE WIDTH (DP 1021186) (J1) - EASEMENT FOR SIGNAGE AND ELECTRICITY CABLES 0.45, 1, 3 (K) - EASEMENT FOR PASSAGEWAY CARRIAGEWAY AND SERVICES (L1) - EASEMENT FOR UNDERGROUND ELECTRICITY CABLES AND A (L2) - EASEMENT FOR ELECTRICITY SUBSTATION AND ACCESS THE (M) - RESTRICTION ON THE USE OF LAND (DP 1021186) (N) - POSITIVE COVENANT (DP 1021186) (SPCS) - STORMWATER POLLUTION CONTROL SYSTEM (DP 1021186) 	ARIABLE WIDTH (DP 10 IDE AND VARIABLE WID 3 AND 5 WIDE AND VARI S VARIABLE WIDTH (DP ACCESS THERETO 2 WII RETO 3.5 WIDE (DP 102
	DETAIL & LEVELS OVER SITED PLAN 1021186	
LOCATION: No.393 PACIFI	C HIGHWAY, BELMONT	
CLIENT: Kaufland		

1. Only visible surface features have been surveyed and are

2. This plan displays information suitable for detailed planning


3. The cadastre shown on this plan has been located to a


standard of accuracy in accordance with Regulation 10 of the

and design at the scales stated only. The plan may not be used for any other purpose or at any scales other than those stated.

shown to scale accuracy only.

Ρ

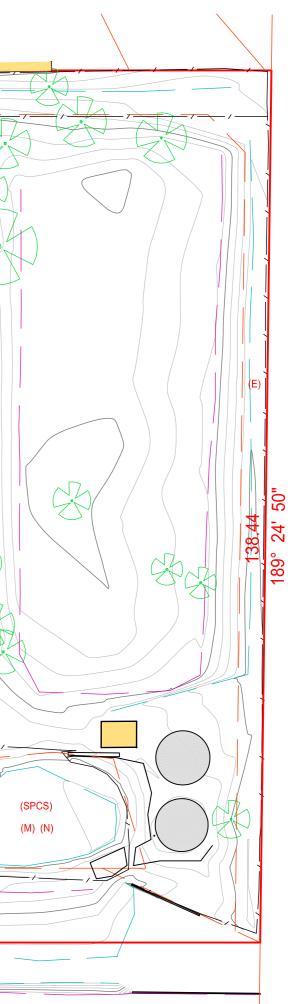
ZN

(E)

SCALE 1:600 (A1)

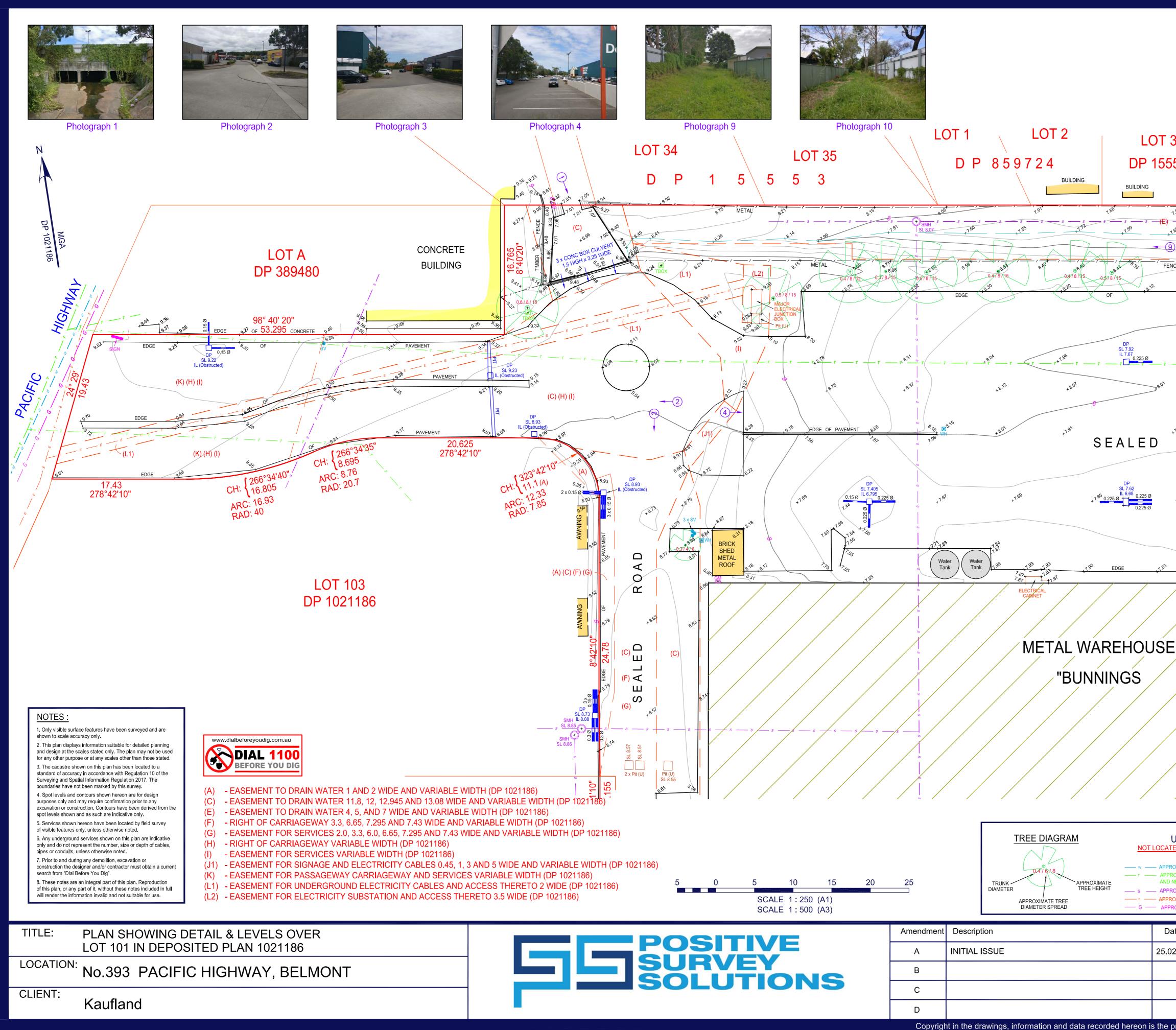
98° 40' 20"

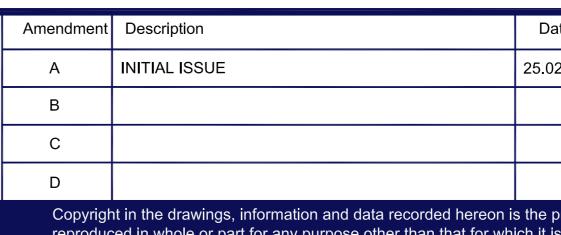
(E)



Amendment	Description	Date	SCALE: 1:600 (A1) DATE: 25.02.2019	JOB No: 19113				
А	INITIAL ISSUE	25.02.2019	DATUM: A.H.D.					
В			ORIGIN: PM 22771 - RL 9.766 CONTOUR INTERVAL: 0.25 m SURVEYOR: LT DRAWN: SD					
С				SHEET 1 OF 5				
D			DRAWING REF: 19113_DET_A REVISION: A					
Copyright in the drawings, information and data recorded hereon is the property of Positive Survey Solutions Pty Ltd and may not be used, copied or repreduced in whele or part for any purpose other than that for which it is supplied without the prior consent of Positive Survey Solutions Pty Ltd								

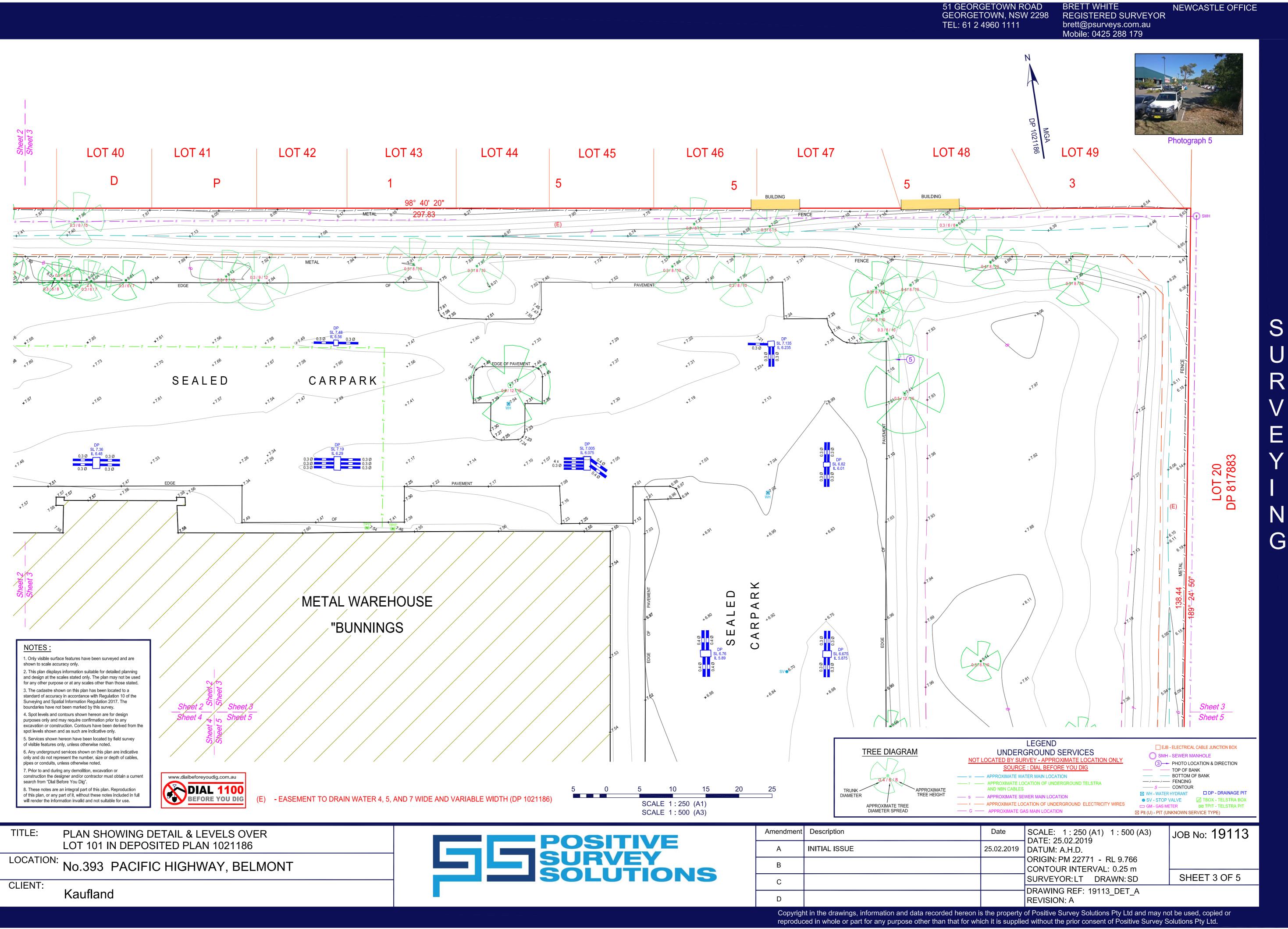
BRETT WHITE REGISTERED SURVEYOR brett@psurveys.com.au Mobile: 0425 288 179


NEWCASTLE OFFICE


LOT 20 DP 817883 S R \mathbf{V} E N G

produced in whole or part for any purpose other than that for which it is supplied without the prior consent of Positive Survey Solutions Pty Ltd.

D

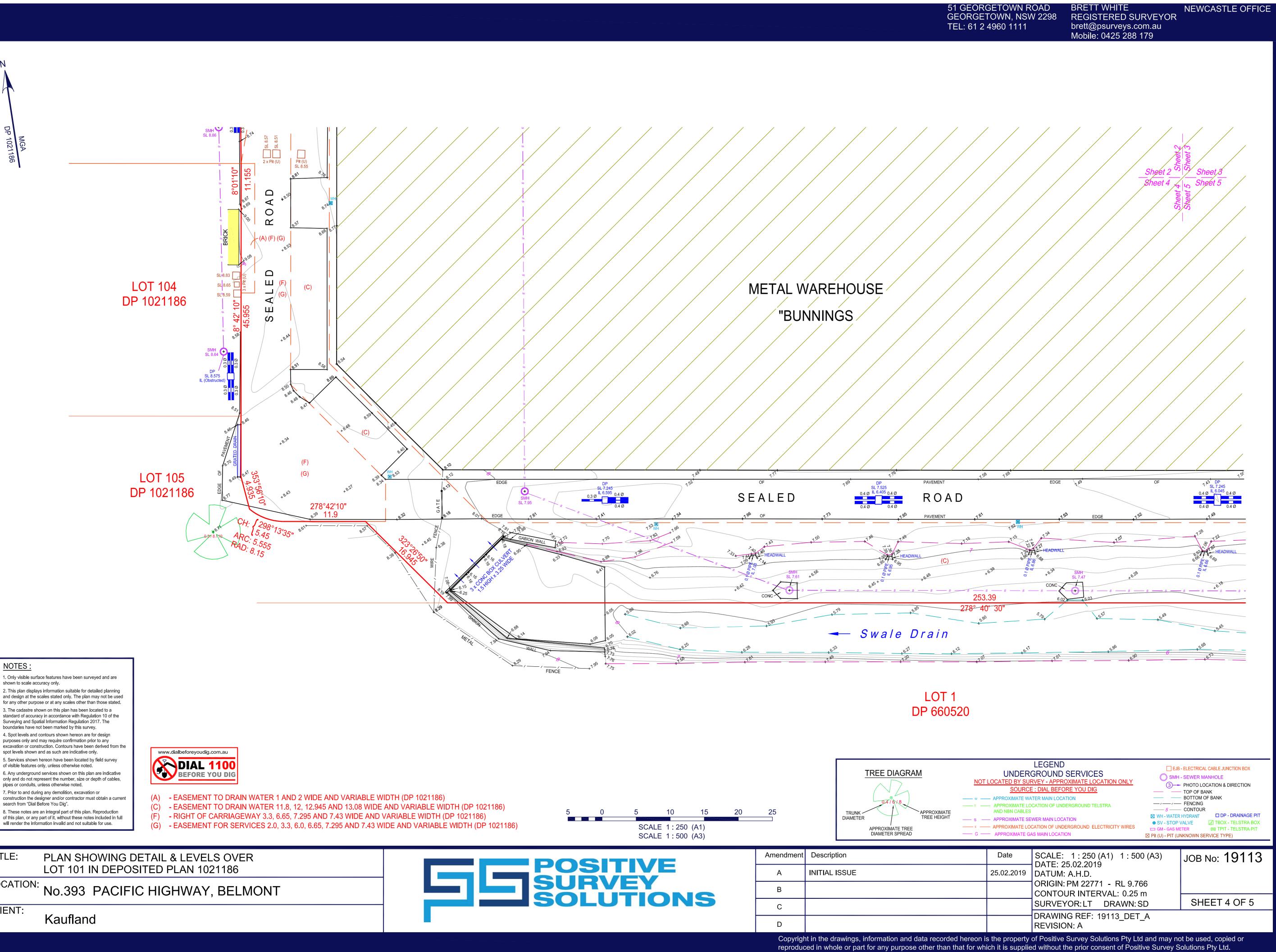


1111	brett@psurveys.co Mobile: 0425 288 1		
			<u>Sheet 2</u> Sheet 3
7	LOT 102	LOT 39	l S I
53	DP 1021186		
	98° 40' 20"		
9 FENCE	1 ⁹⁴ 297.83 1 ⁹²	1.85° (1.778/15) (+) s s s s s s	1.81
<u>(10)</u>	1 ⁵⁶	SMH 151	,1. ⁴
E 821		0.375 \10 0.375 \10 0.375 \18 0.375 \18	
	0.578/15	800 0.375 18 0.375 18 800 800	1.95
BENCH MA DRILL HOL TOP OF KE	EIN		R.
RL 8.170 (A	(HD)	ΠP	
+1 ⁹⁸	$r - r + \frac{1^{8^2}}{r} r - r - r - r$	DP SL 7.715 IL 6.805 0.225 Ø 7 7 7 7	+1,68
	+1 ⁹¹	+1 ^{%6} +1 ^{%6}	° + ^{1,80}
⁶ /	+1.16	+1.12	+1.61
	CARPARK		
		DP	
1.69	+1.55	DP SL-7.47 0.225 Ø ^{IL} 6.56 0.3 Ø 0.225 Ø 0.3 Ø	1.46
		+1.51 +1.55	
			+1.51
OF	1.1% PAVEMENT 1.1%	7.68	
			Sheet 2 Sheet 3
			000
			/ /
		EJB - ELECTRICAL CABLE JUNCTIC	DN BOX
NDERGROUN D BY SURVEY - AF SOURCE : DIAL B	ND SERVICES PPROXIMATE LOCATION ONLY EFORE YOU DIG	SMH - SEWER MANHOLE 3 PHOTO LOCATION & DIRE TOP OF BANK	
NDERGROUN D BY SURVEY - AF SOURCE : DIAL B KIMATE WATER MAIN I XIMATE LOCATION OF SN CABLES	ND SERVICES PROXIMATE LOCATION ONLY EFORE YOU DIG LOCATION UNDERGROUND TELSTRA	SMH - SEWER MANHOLE 3 - PHOTO LOCATION & DIRE TOP OF BANK BOTTOM OF BANK 	CTION
NDERGROUN D BY SURVEY - AF SOURCE : DIAL B XIMATE WATER MAIN I XIMATE LOCATION OF SN CABLES XIMATE SEWER MAIN XIMATE LOCATION OF	ND SERVICES PROXIMATE LOCATION ONLY EFORE YOU DIG LOCATION UNDERGROUND TELSTRA LOCATION UNDERGROUND ELECTRICITY WIRES	SMH - SEWER MANHOLE 3 PHOTO LOCATION & DIRE TOP OF BANK BOTTOM OF BANK FENCING 5 CONTOUR	CTION AINAGE PIT LSTRA BOX
NDERGROUN D BY SURVEY - AF SOURCE : DIAL B XIMATE WATER MAIN I DXIMATE LOCATION OF DXIMATE SEWER MAIN XIMATE LOCATION OF DXIMATE GAS MAIN LO	ND SERVICES PROXIMATE LOCATION ONLY EFORE YOU DIG LOCATION UNDERGROUND TELSTRA LOCATION UNDERGROUND ELECTRICITY WIRES CATION	SMH - SEWER MANHOLE 3 - PHOTO LOCATION & DIRE TOP OF BANK BOTTOM OF BANK FENCING 5 - CONTOUR WH - WATER HYDRANT DP - DR SV - STOP VALVE TBOX - TEL GM - GAS METER TPIT - TEL Pit (U) - PIT (UNKNOWN SERVICE TYPE)	CTION AINAGE PIT LSTRA BOX LSTRA PIT
NDERGROUN D BY SURVEY - AF SOURCE : DIAL B XIMATE WATER MAIN I XIMATE LOCATION OF 3N CABLES XIMATE SEWER MAIN XIMATE LOCATION OF DXIMATE GAS MAIN LO E SCAL DATE	ND SERVICES PROXIMATE LOCATION ONLY EFORE YOU DIG LOCATION UNDERGROUND TELSTRA LOCATION UNDERGROUND ELECTRICITY WIRES	SMH - SEWER MANHOLE 3 - PHOTO LOCATION & DIRE TOP OF BANK BOTTOM OF BANK FENCING 5 - CONTOUR WH - WATER HYDRANT DP - DR SV - STOP VALVE TBOX - TEL GM - GAS METER TPIT - TEL Pit (U) - PIT (UNKNOWN SERVICE TYPE)	CTION AINAGE PIT LSTRA BOX LSTRA PIT
NDERGROUN D BY SURVEY - AF SOURCE : DIAL B XIMATE WATER MAIN I XIMATE LOCATION OF DXIMATE SEWER MAIN XIMATE LOCATION OF DXIMATE GAS MAIN LO B CORIG	ND SERVICES PROXIMATE LOCATION ONLY EFORE YOU DIG LOCATION UNDERGROUND TELSTRA LOCATION UNDERGROUND ELECTRICITY WIRES CATION LE: 1:250 (A1) 1:500 E: 25.02.2019	(A3) SMH - SEWER MANHOLE 3 - PHOTO LOCATION & DIRE TOP OF BANK BOTTOM OF BANK FENCING 5 - CONTOUR WH - WATER HYDRANT DP - DR/ SV - STOP VALVE TBOX - TEL TBOX - TEL TBOX - TEL TPIT - TEL TOP OF BANK TPIT - TEL TOP OF BANK TOP OF DR/ TOP OF DR	CTION AINAGE PIT STRA BOX STRA PIT
NDERGROUN D BY SURVEY - AF SOURCE : DIAL B (IMATE WATER MAIN I XIMATE LOCATION OF N CABLES XIMATE SEWER MAIN (IMATE LOCATION OF XIMATE GAS MAIN LO B 2019 CONT SURV	ND SERVICES PROXIMATE LOCATION ONLY EFORE YOU DIG LOCATION UNDERGROUND TELSTRA LOCATION UNDERGROUND ELECTRICITY WIRES CATION .E: 1:250 (A1) 1:500 E: 25.02.2019 JM: A.H.D. IN: PM 22771 - RL 9.76	(A3) SMH - SEWER MANHOLE 3 PHOTO LOCATION & DIRE TOP OF BANK BOTTOM OF BANK FENCING CONTOUR WH - WATER HYDRANT DPP - DR TBOX - TEL TBOX - TEL TBOX - TEL TBOX - TEL TBOX - TEL TPIT - TEL TPIT (UNKNOWN SERVICE TYPE) (A3) JOB No: 19 SHEET 2 0	CTION AINAGE PIT STRA BOX STRA PIT

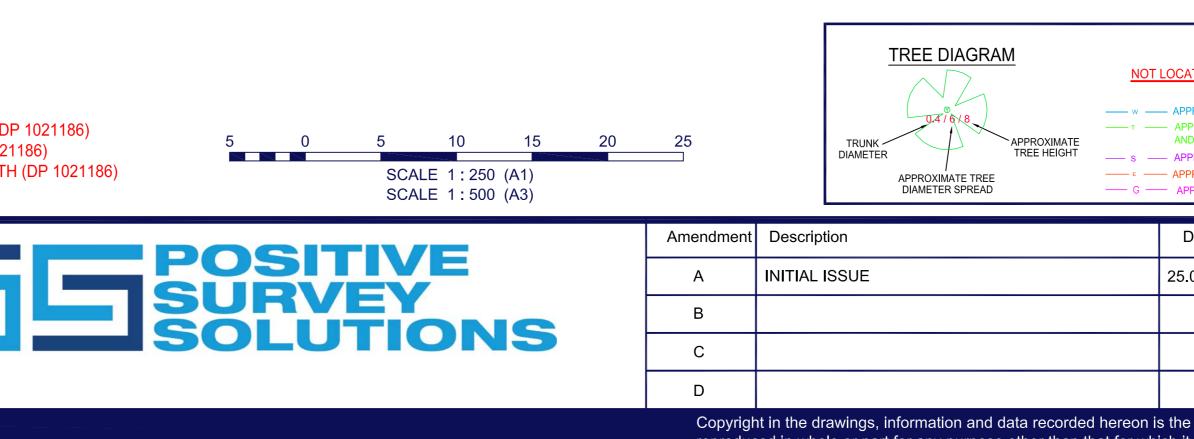
G

NEWCASTLE OFFICE

Ρ R $\left(\right)$ \mathbf{N} A G Ε IV Ε



G


shown to scale accuracy only.		
This plan displays information suitable for detailed planning and design at the scales stated only. The plan may not be use for any other purpose or at any scales other than those stated	ad lateral sector and the sector and	
 The cadastre shown on this plan has been located to a standard of accuracy in accordance with Regulation 10 of the Surveying and Spatial Information Regulation 2017. The boundaries have not been marked by this survey. 		
4. Spot levels and contours shown hereon are for design purposes only and may require confirmation prior to any excavation or construction. Contours have been derived from spot levels shown and as such are indicative only.	the www.dialbeforeyoudig.com.au	
 Services shown hereon have been located by field survey of visible features only, unless otherwise noted. 		
 Any underground services shown on this plan are indicative only and do not represent the number, size or depth of cables pipes or conduits, unless otherwise noted. 		
 Prior to and during any demolition, excavation or construction the designer and/or contractor must obtain a curr search from "Dial Before You Dig". 	(A) - EASEMENT TO DRAIN WATER 1 AND 2 WIDE AND VARIABLE W (C) - EASEMENT TO DRAIN WATER 11.8, 12, 12.945 AND 13.08 WIDE	
8. These notes are an integral part of this plan. Reproduction of this plan, or any part of it, without these notes included in fu will render the information invalid and not suitable for use.		VARIABLE WIDTH (DP 1
TITLE: PLAN SHOWIN	G DETAIL & LEVELS OVER	
LOT 101 IN DEF	POSITED PLAN 1021186	
LOCATION: No 202 DAC		
NO.393 PAC	IFIC HIGHWAY, BELMONT	
CLIENT: Kaufland		
naulianu		

Ρ

MGA 1021186

NOTES :

S U R \mathbf{V} E N G

Ka	ufl	ar	าก
Na	un	a	IC

CLIENT:

LOCATION: No.393 PACIFIC HIGHWAY, BELMONT

(E)

www.dialbeforeyoudig.com.au

DIAL 1100

BEFORE YOU DIG

(M) - RESTRICTION ON THE USE OF LAND (DP 1021186)

(SPCS) - STORMWATER POLLUTION CONTROL SYSTEM (DP 1021186)

(N) - POSITIVE COVENANT (DP 1021186)

PLAN SHOWING DETAIL & LEVELS OVER TITLE: LOT 101 IN DEPOSITED PLAN 1021186

NOTES : 1. Only visible surface features have been surveyed and are shown to scale accuracy only. 2. This plan displays information suitable for detailed planning and design at the scales stated only. The plan may not be used for any other purpose or at any scales other than those stated. 3. The cadastre shown on this plan has been located to a standard of accuracy in accordance with Regulation 10 of the Surveying and Spatial Information Regulation 2017. The

boundaries have not been marked by this survey. 4. Spot levels and contours shown hereon are for design purposes only and may require confirmation prior to any excavation or construction. Contours have been derived from the

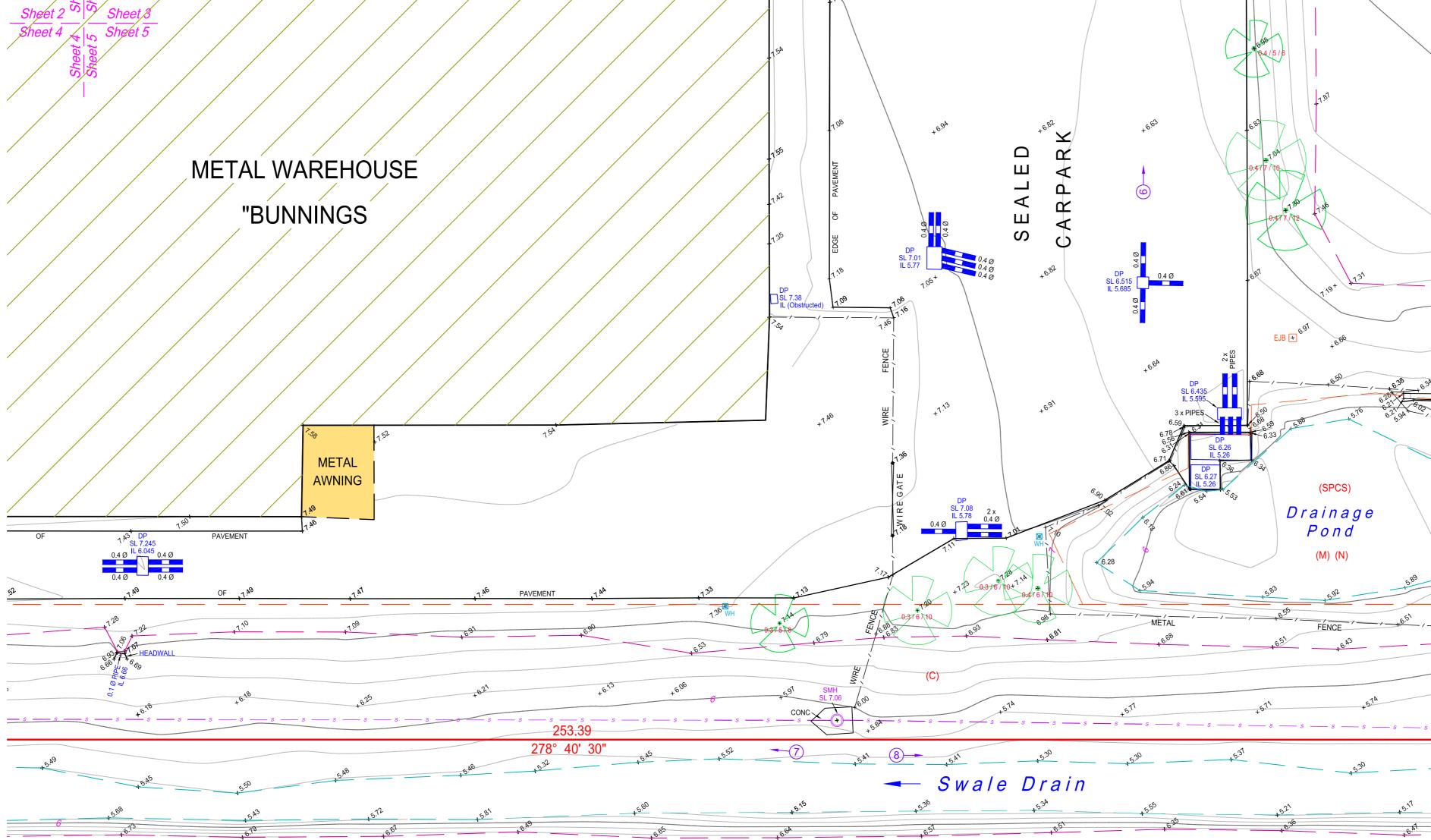
spot levels shown and as such are indicative only.

of visible features only, unless otherwise noted.

7. Prior to and during any demolition, excavation or

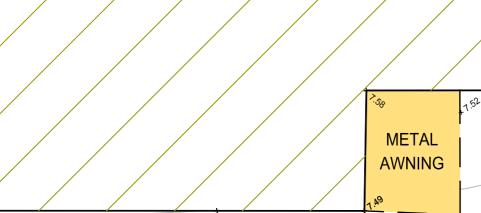
pipes or conduits, unless otherwise noted.

5. Services shown hereon have been located by field survey


Any underground services shown on this plan are indicative only and do not represent the number, size or depth of cables,

construction the designer and/or contractor must obtain a current search from "Dial Before You Dig".

8. These notes are an integral part of this plan. Reproduction

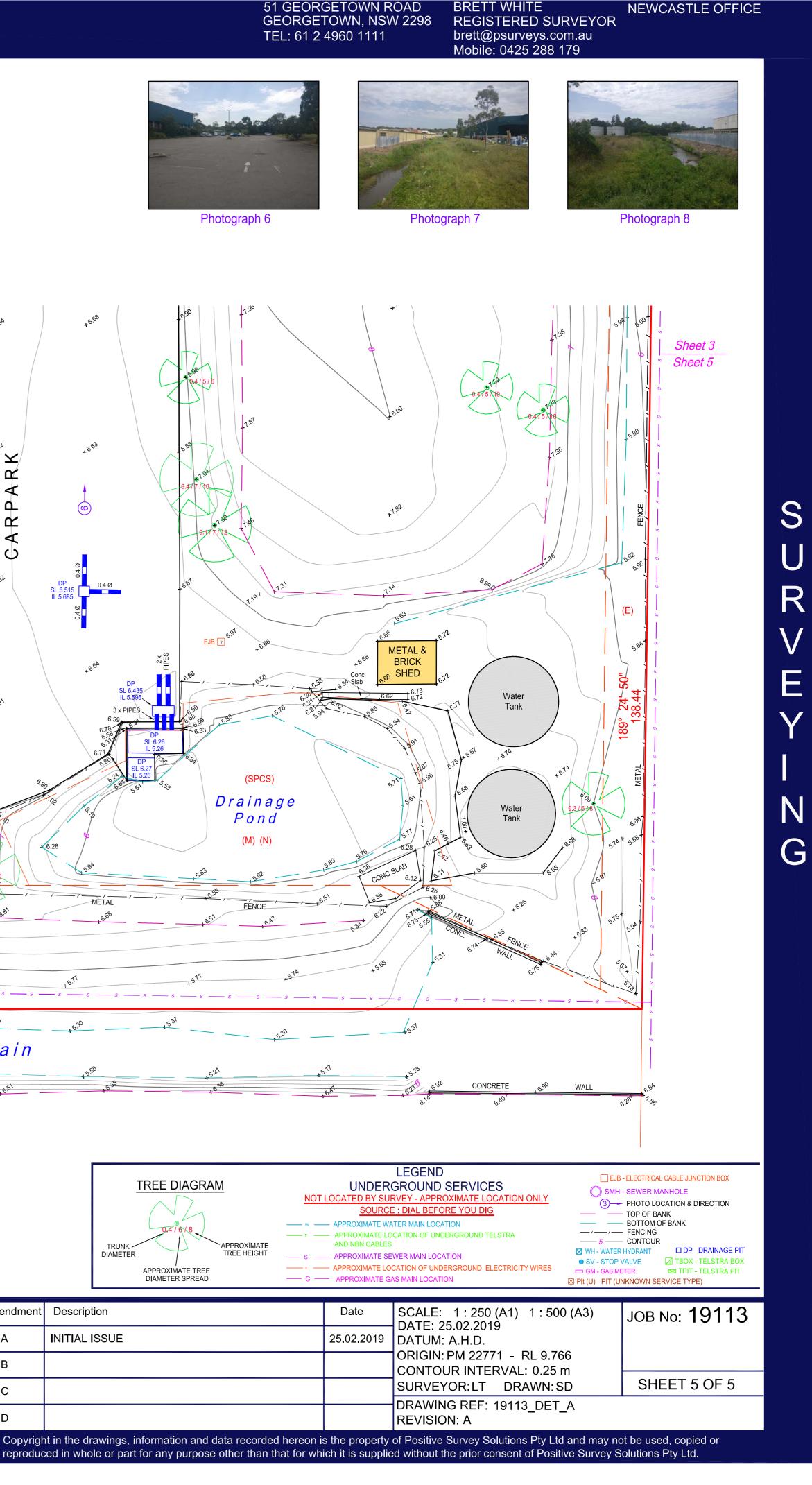

will render the information invalid and not suitable for use.

of this plan, or any part of it, without these notes included in full

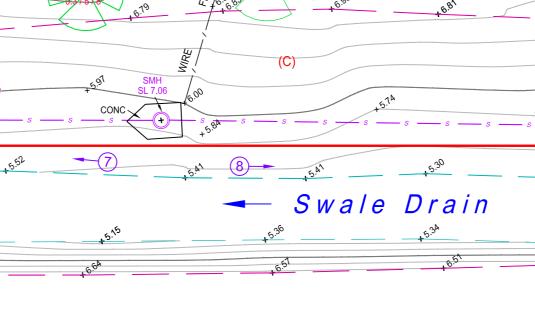
G

Ε

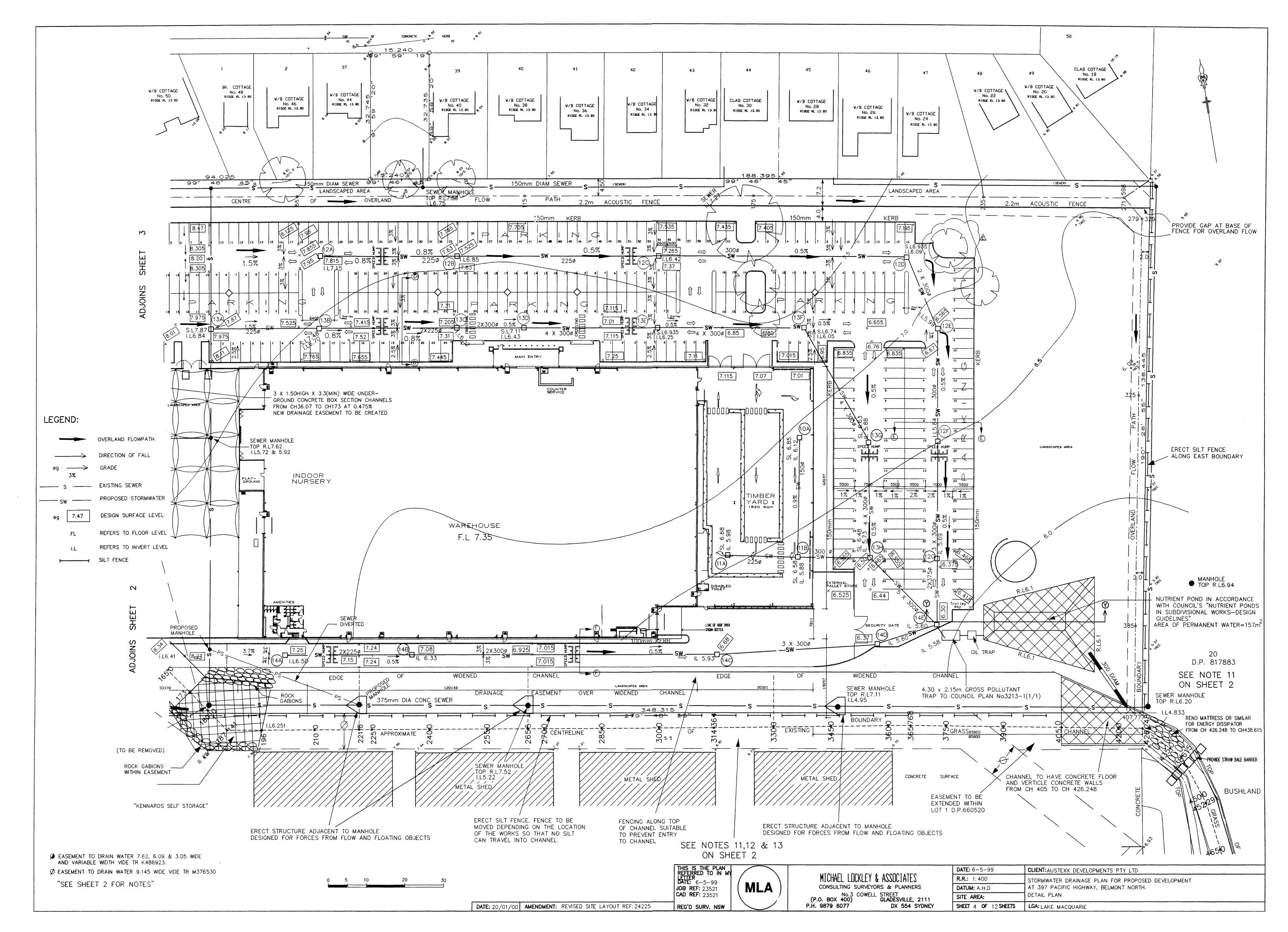

- EASEMENT TO DRAIN WATER 4, 5, AND 7 WIDE AND VARIABLE WIDTH (DP 1021186)

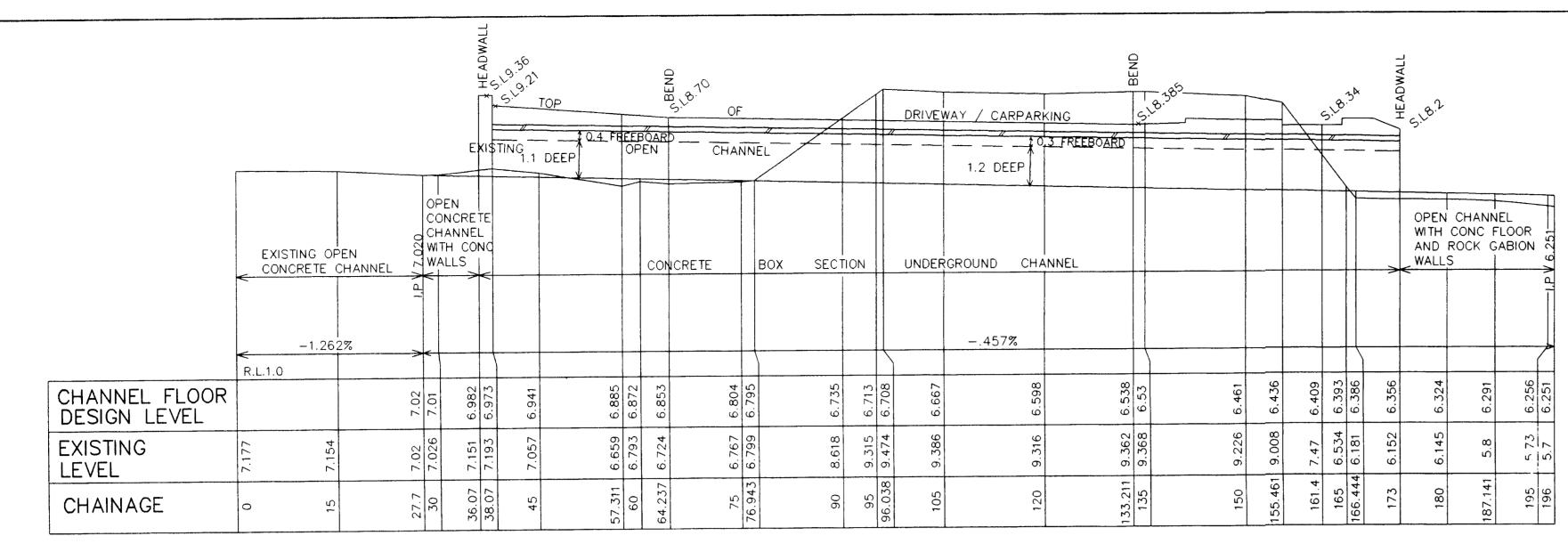


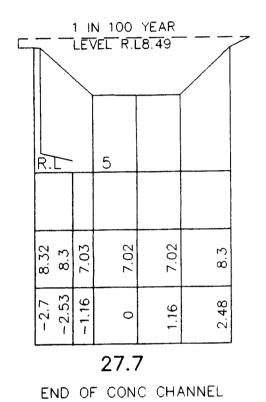
D



Amendment	Description	Da
А	INITIAL ISSUE	25.02
В		
С		
D		
Copyrigh	nt in the drawings, information and data recorded hereon is	s the p

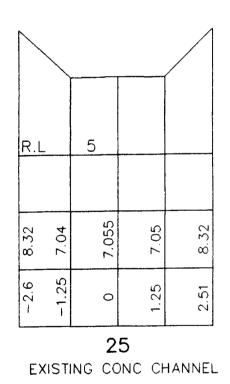


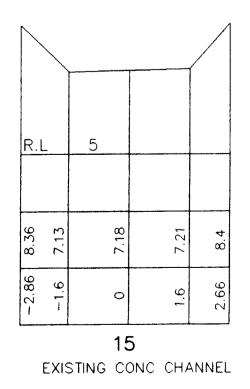

+6.84

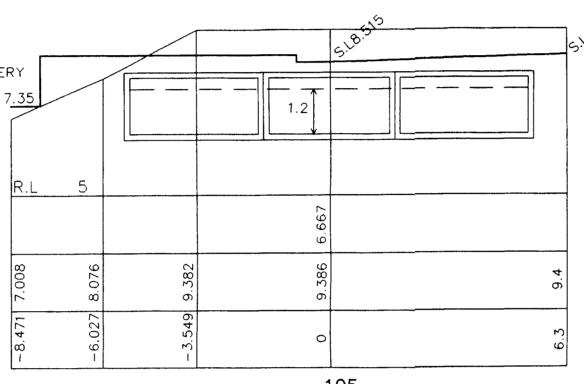


APPENDIX C

CIVIL ENGINEERING DESIGN for DC/99/01634/1M-A (MICHEAL LOCKLEY & ASSOCIATES SH1 to SH12)






CHANNEL LONGSECTION VERT 1:100 HORZ 1:500

NURSERY

NOTE: EACH CONCRETE BOX SECTION IS 3.30m WIDE AND 1.5 DEEP

8.15

934

452

—I.L6.12 (APPROX)

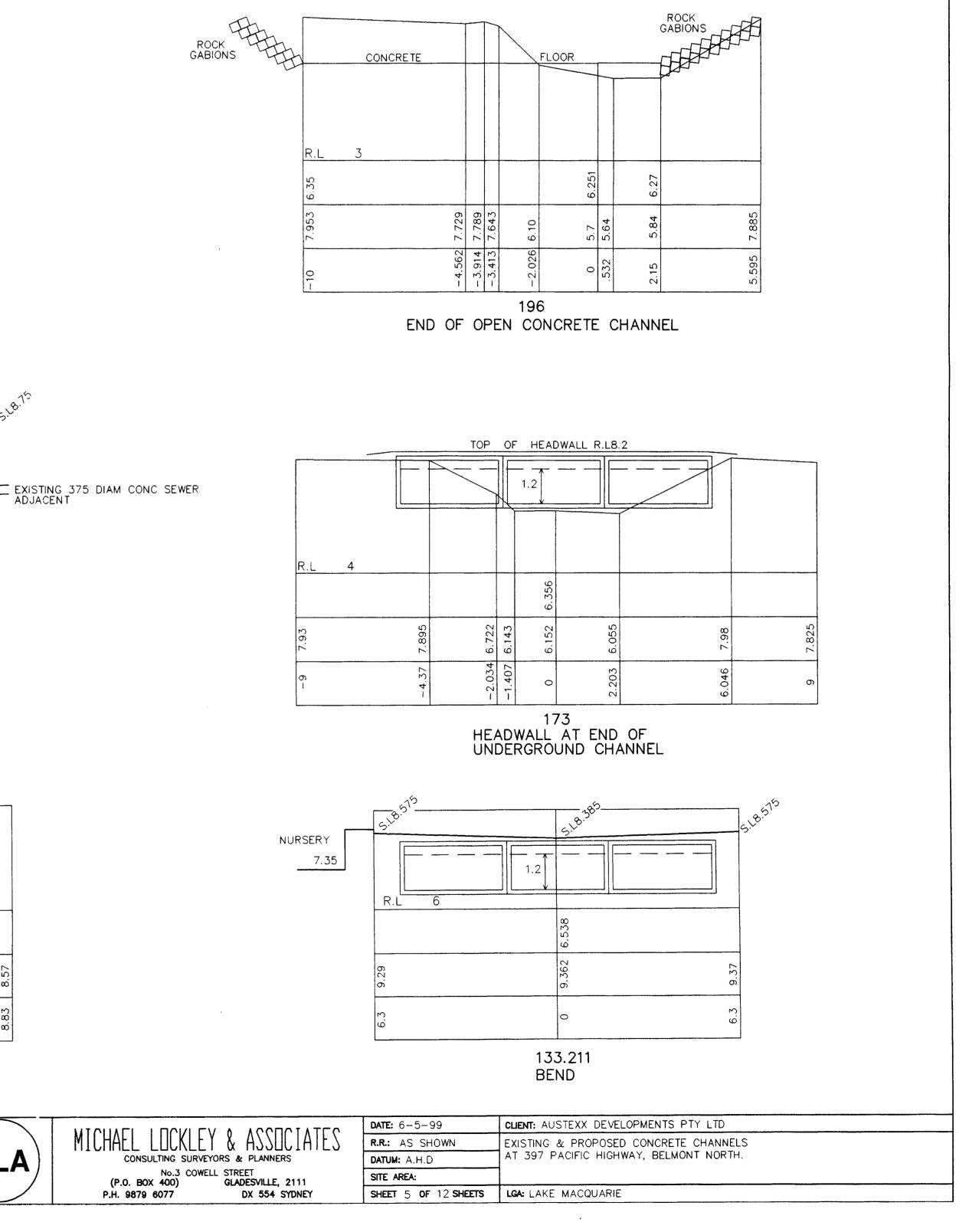
NURSERY

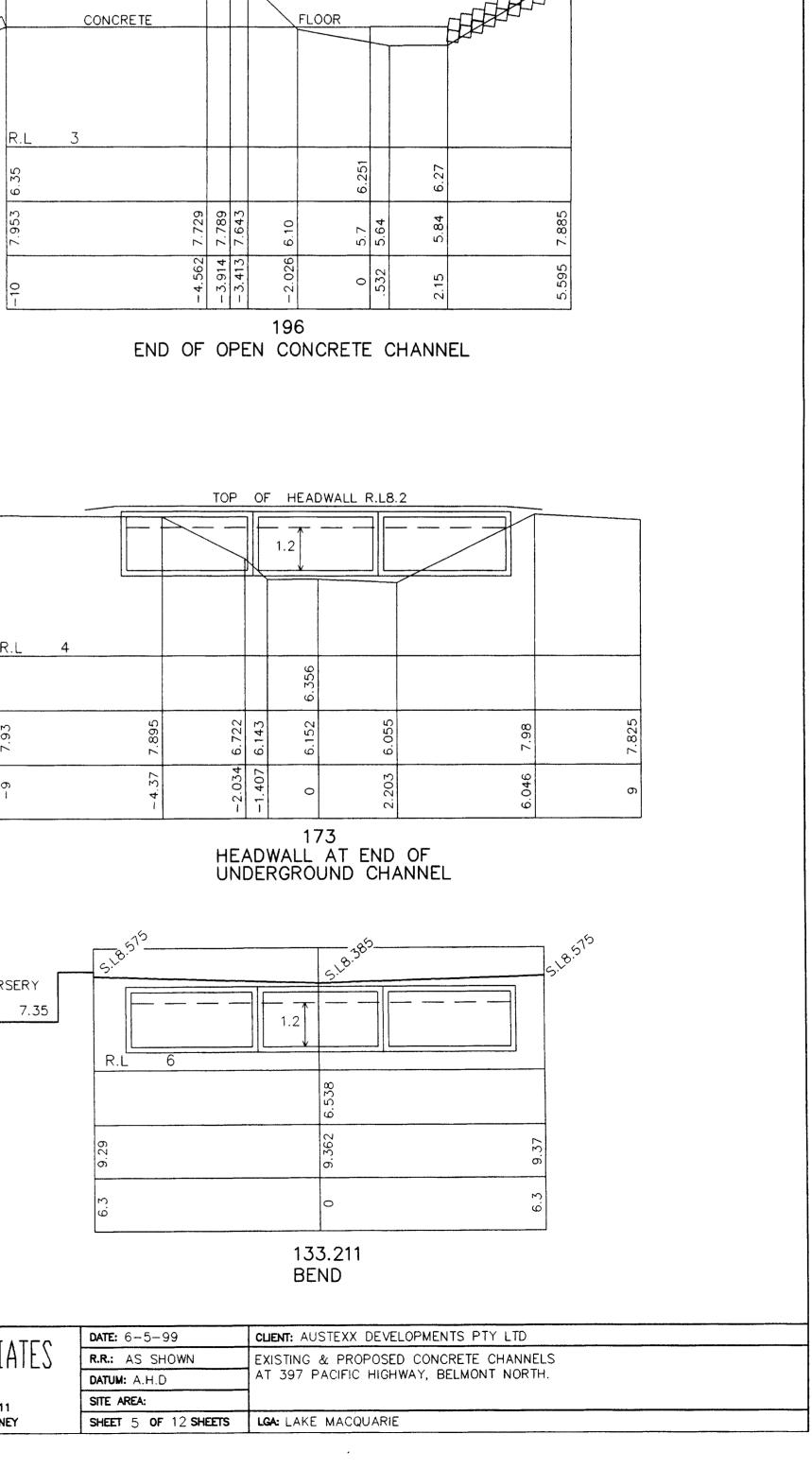
4

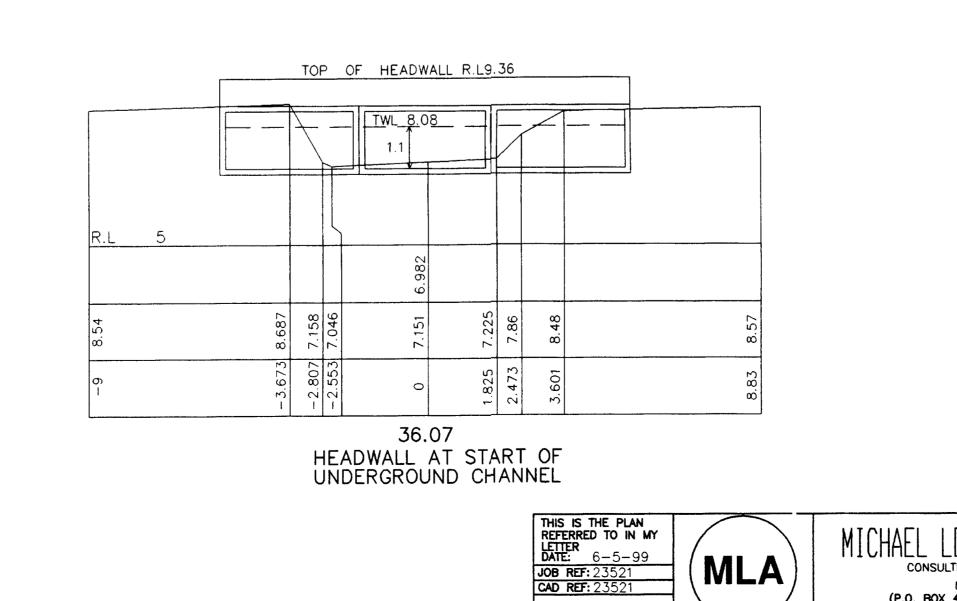
7.35

105

1 250

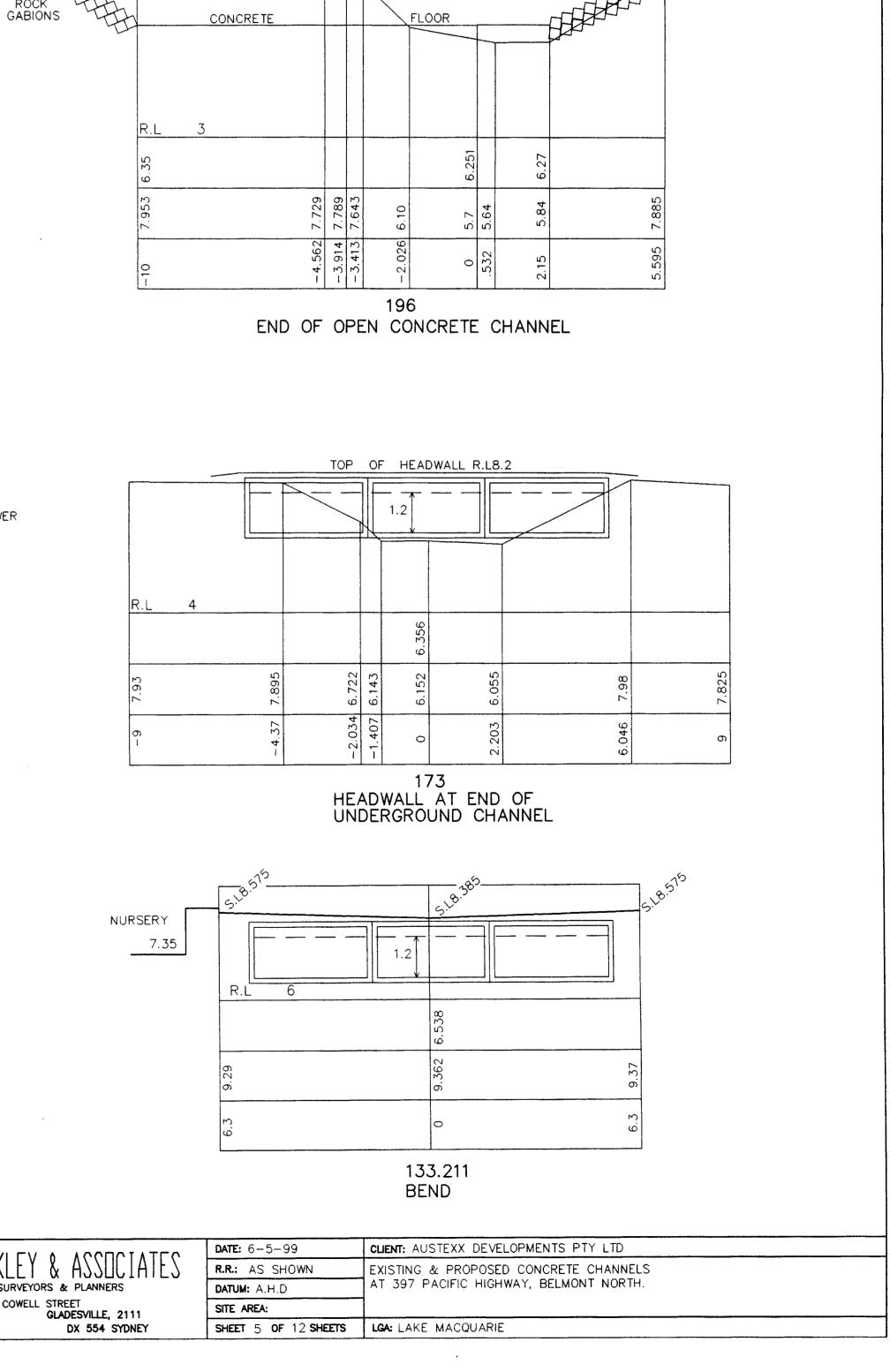



I.L6.12 (APPROX)

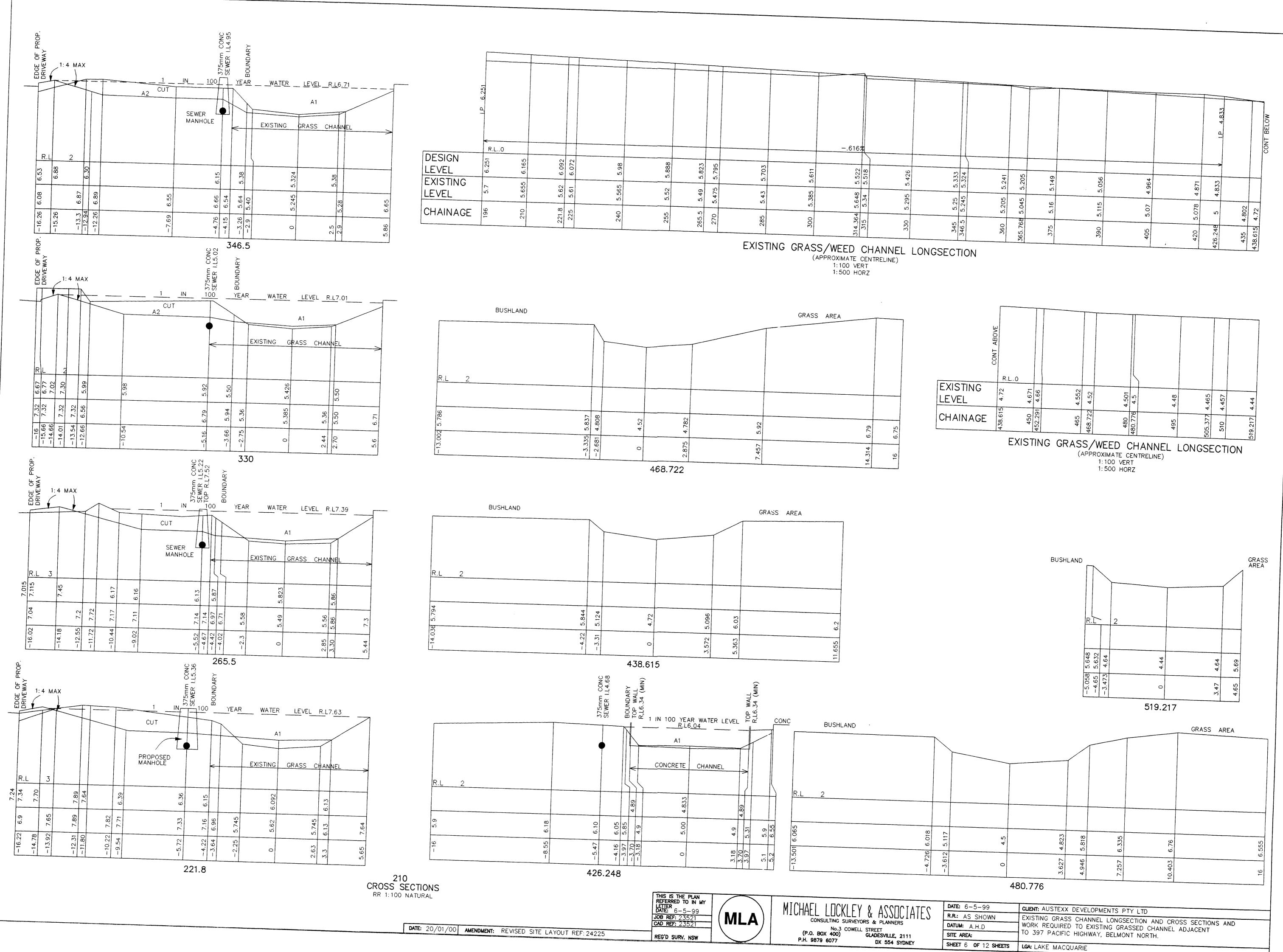

105

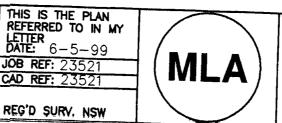
. 8.15

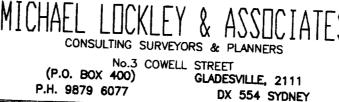
MLA

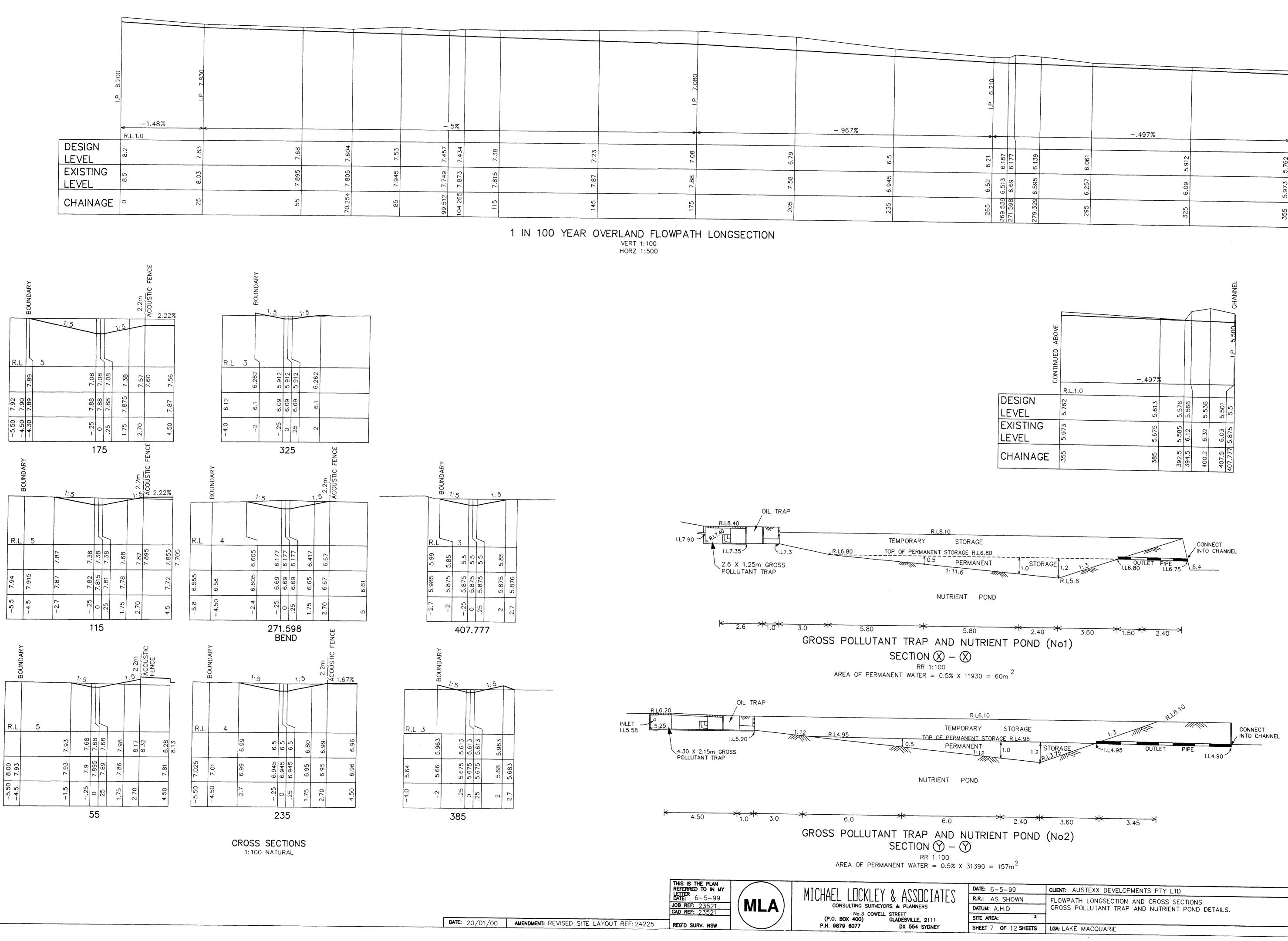

6.713

315

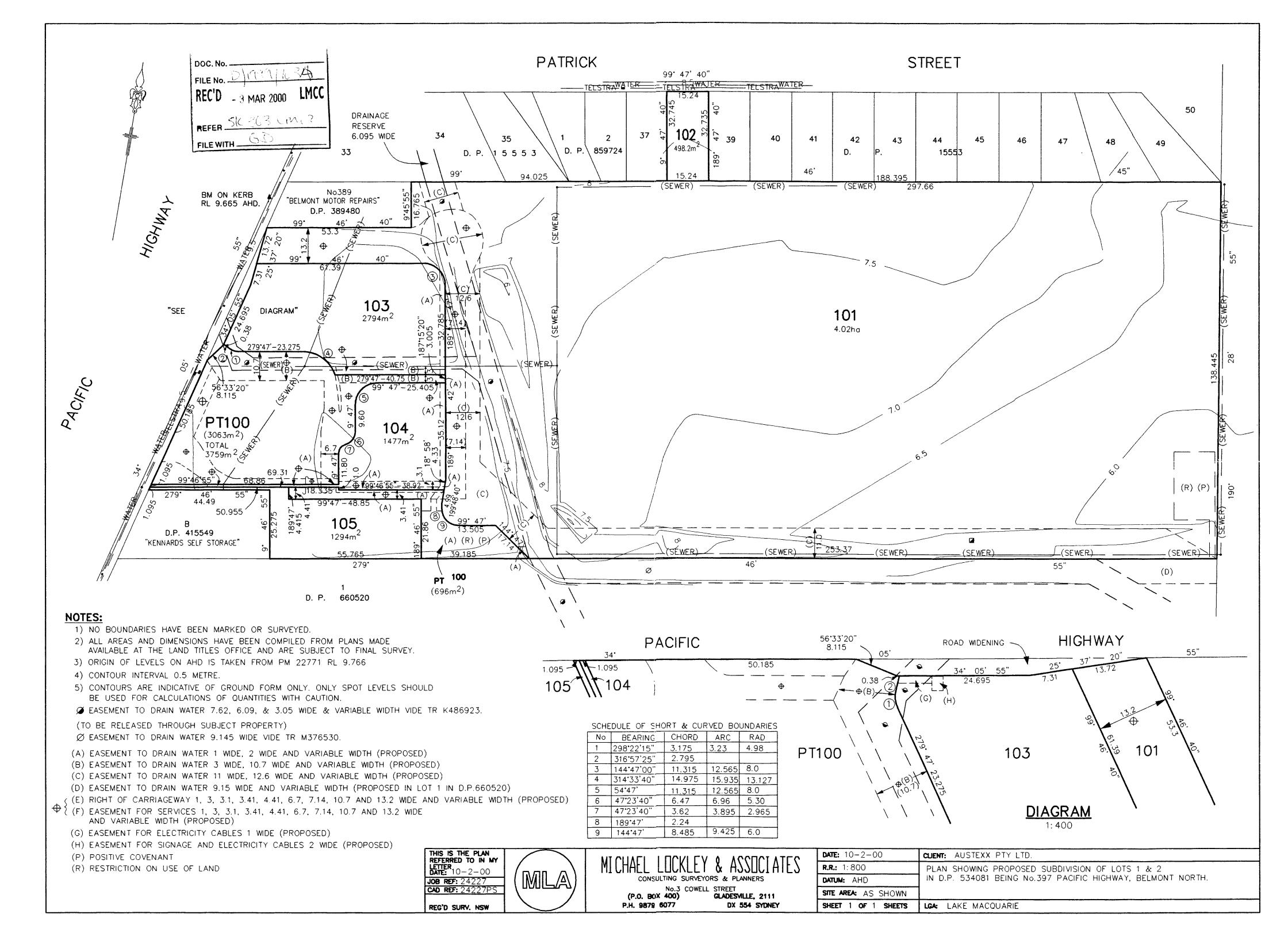

00

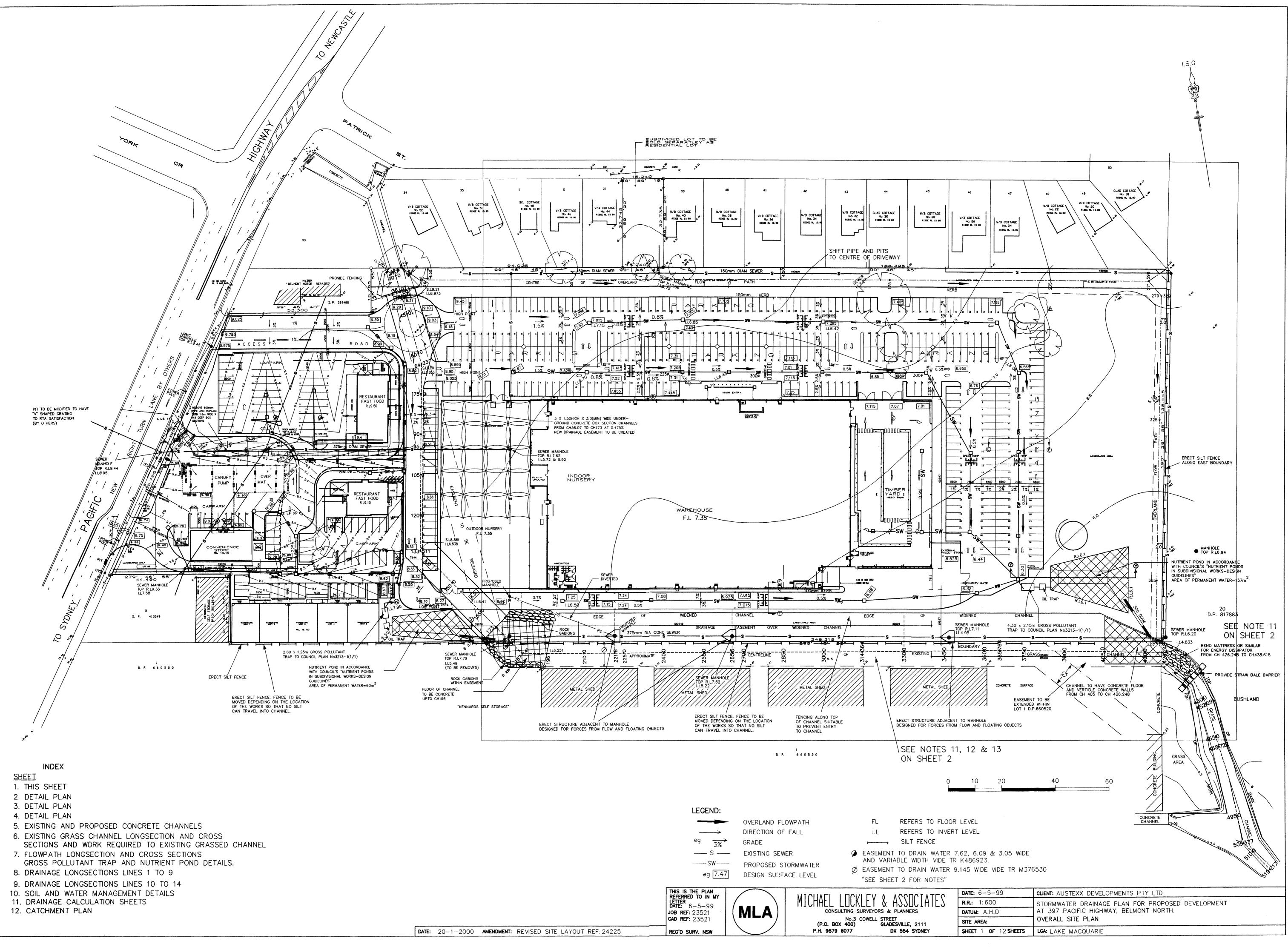

0356

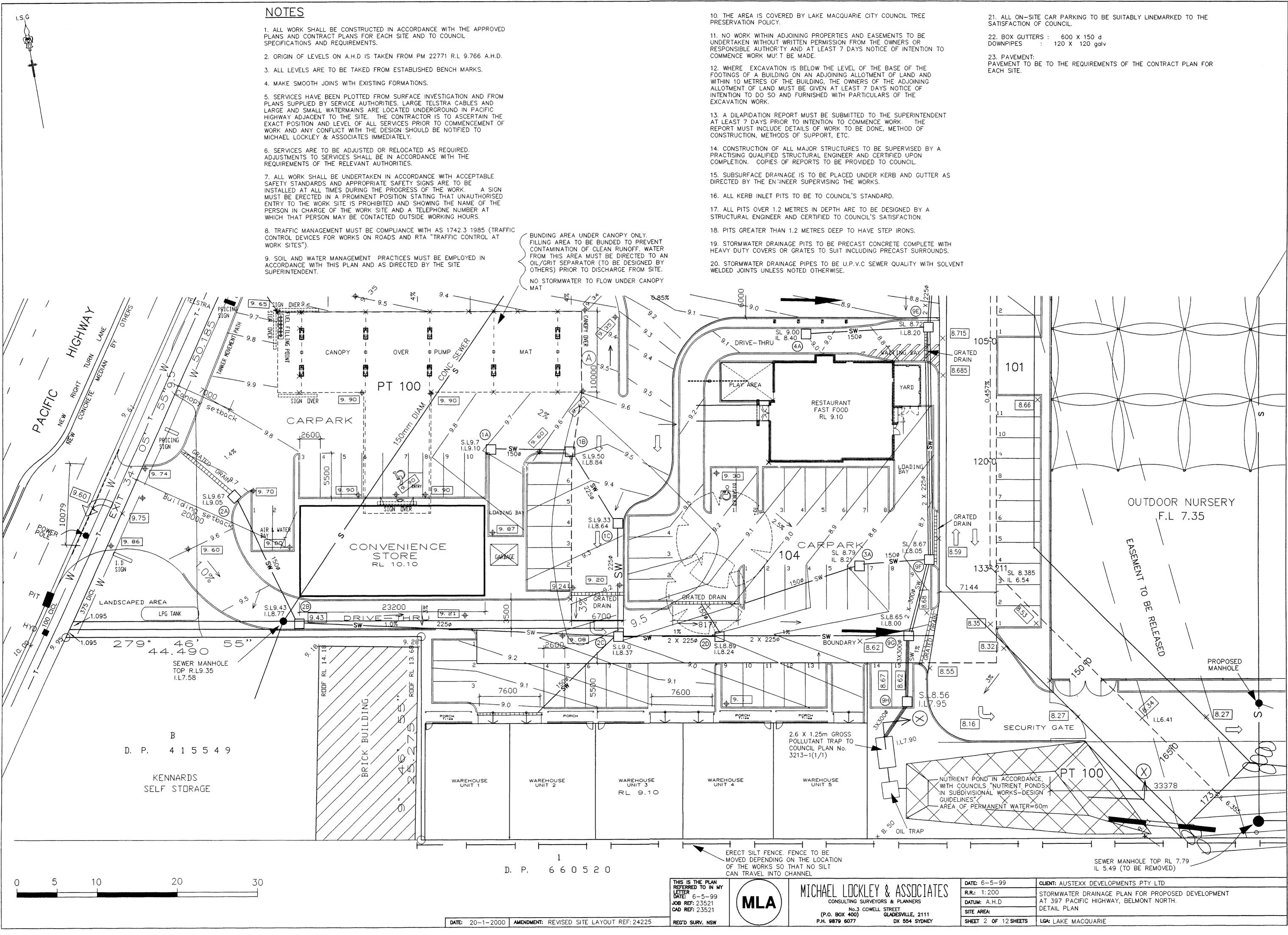

95

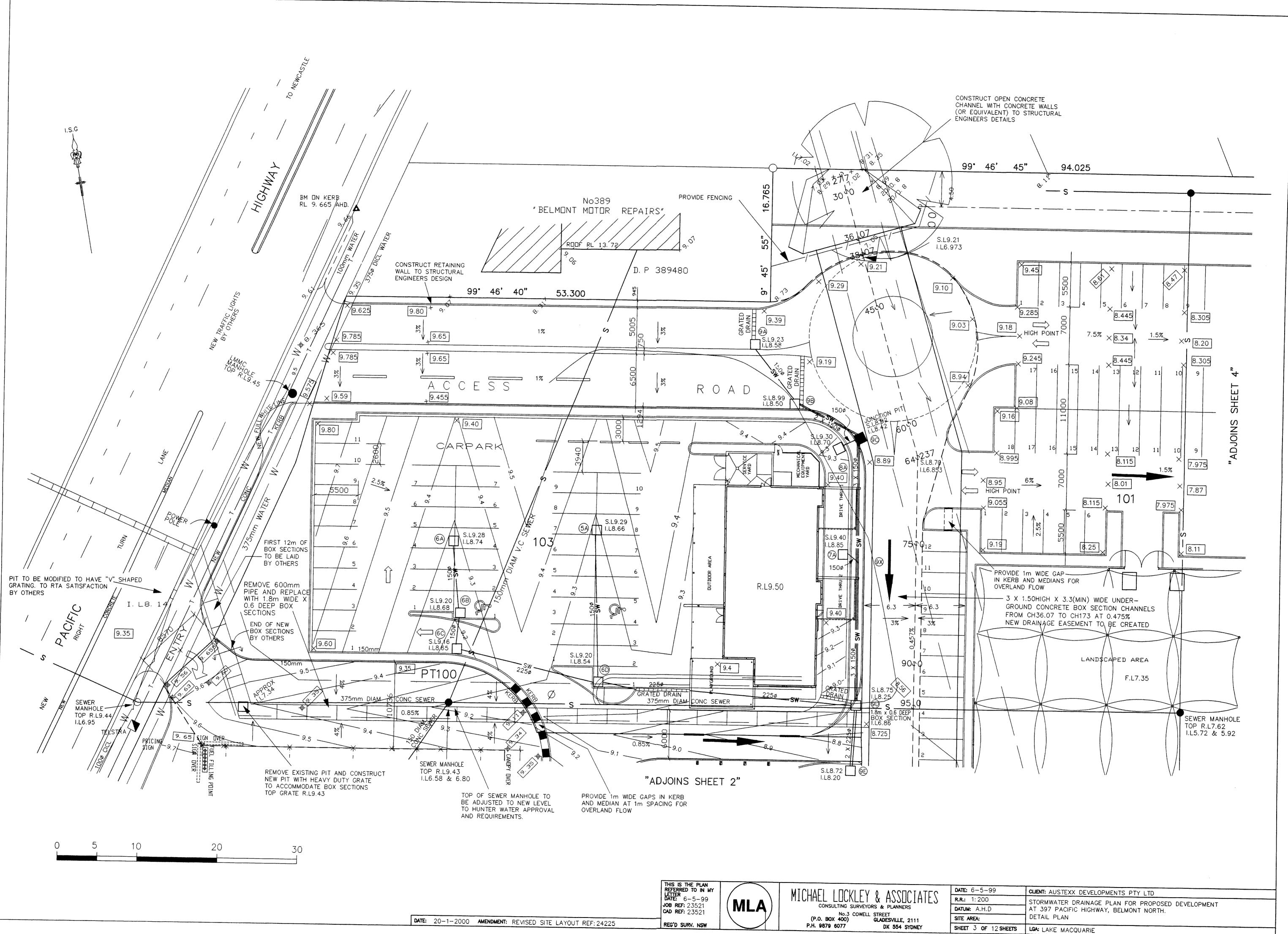

DATE: 20/01/00 AMENDMENT: REVISED SITE LAYOUT REF: 24225 REG'D SURV. NSW



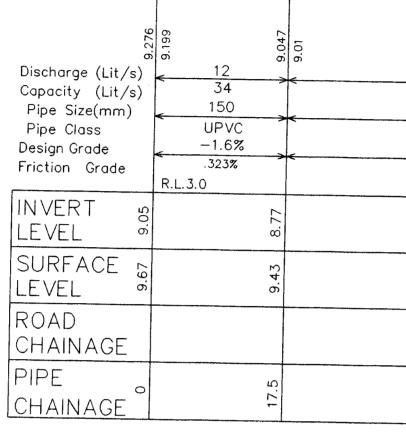

DATE: 6-5-99
R.R.: AS SHOW
DATUM: A.H.D
SITE AREA:
SHEET 6 OF 12




		.P 7.080									
7.38	7.23	7.08	< <u> </u>	967%	21	6.187	139	061	497% 	32	UED BELOW
115 7.815	145 7.87	175 7.88	205 7.58 6	235 6.945 6	265 6.52 6.52	269.539 6.513 6.1 271.598 6.69 6.1	ف	295 6.257 6.0	25 6.09 5.9	55 5.973 5.76	CONTIN
		······				26	27		M		



5-99	CLIENT: AUSTEXX DEVELOPMENTS PTY LTD	
SHOWN H.D 2	FLOWPATH LONGSECTION AND CROSS SECTIONS GROSS POLLUTANT TRAP AND NUTRIENT POND DETAILS.	- <u></u>
OF 12 SHEETS	LGA: LAKE MACQUARIE	·····

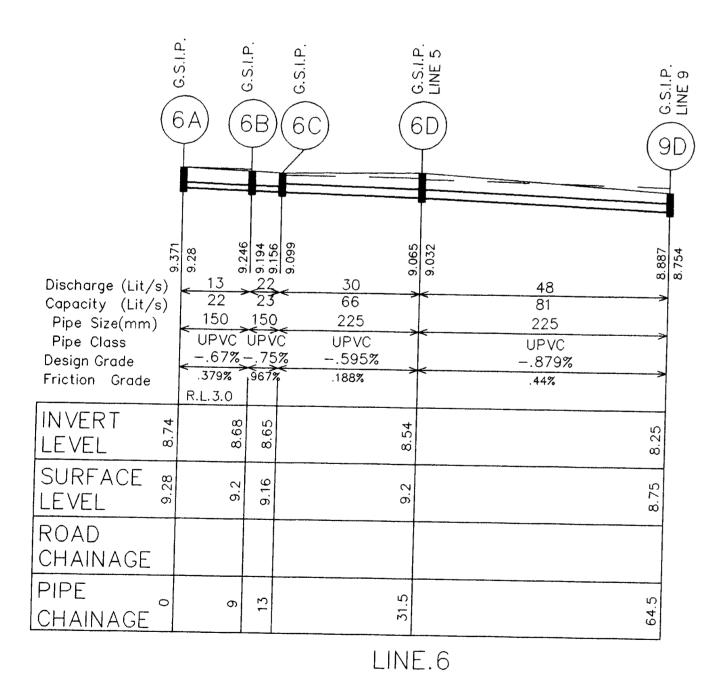

P.H. 9879 6077

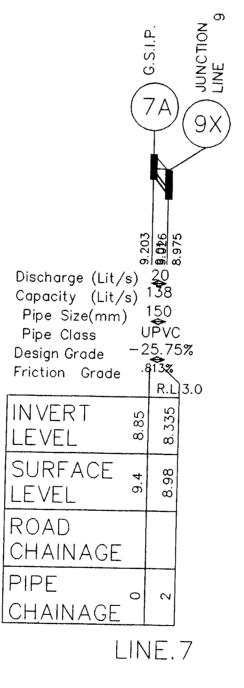
		B (1	C	C) C.S.I.P.
G Discharge (Lit/s) Capacity (Lit/s) Pipe Size(mm) Pipe Class Design Grade Friction Grade	6 20 45 150 UPVC -2.74% .815% R.L.3.0	25 119 225 UPVC -1.905% .138%	225 UPVC −1.929% .211%	V V V 8.894 8.795
INVERT	8.84	8.64		8.37
SURFACE	9.5	9.33		6
ROAD CHAINAGE				
PIPE CHAINAGE	9.5	20		34
		LINE 1		

,

	Pipe Size(mm)		150
	Pipe Class		UPVC
	Design Grade		-1.6%
	Friction Grade		.323%
			R.L.3.0
	INVERT	5	
	LEVEL	9.05	
	SURFACE	5	
	LEVEL	9.67	
		_	
	ROAD		
	CHAINAGE		
	PIPE	0	
ĺ	CHAINAGE		

LINE.1

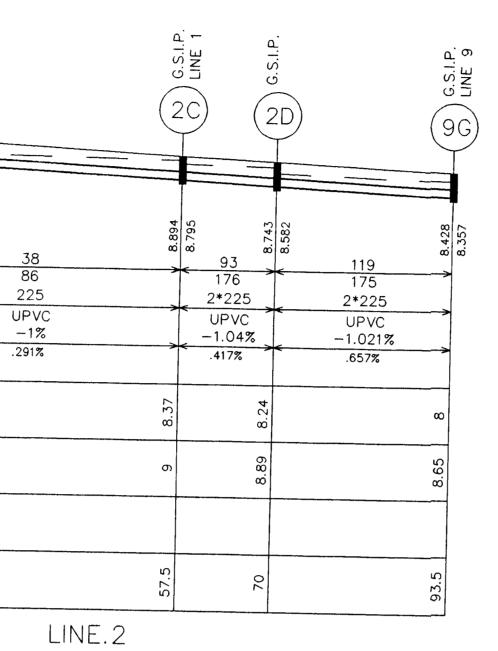


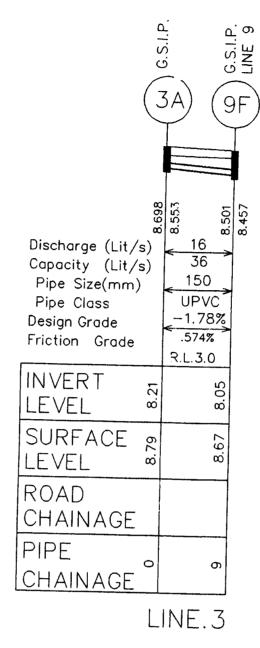

(2A)

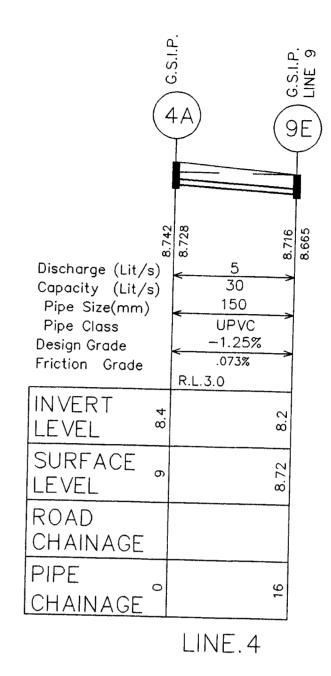
Ś

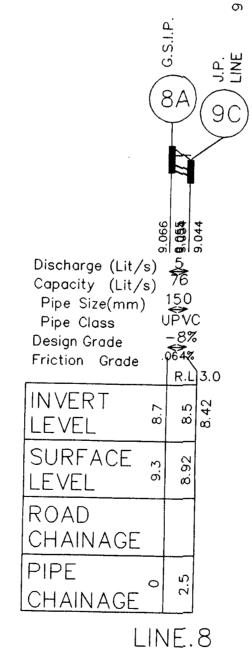
U U

(2B)

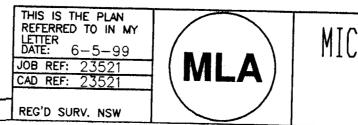


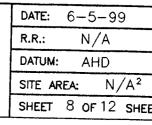



LEVEL	8.8 8
SURFACE LEVEL	9.4
ROAD CHAINAGE	
PIPE CHAINAGE	0

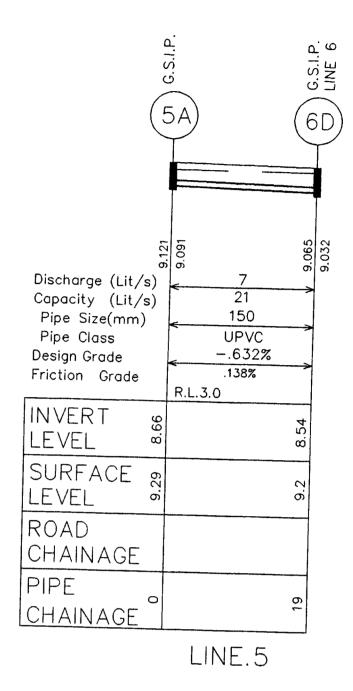

DRAINAGE LONG SECTIONS VERT 1:100 HORIZ 1:500

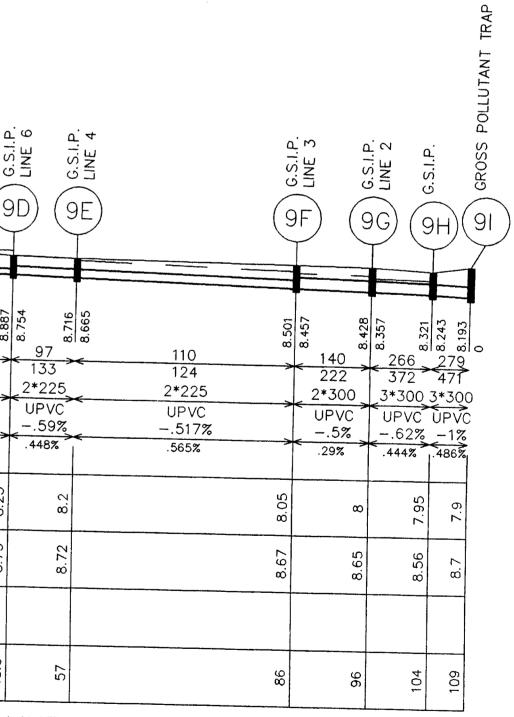
UPVC DENOTES SEWER GRADE EXTRA HEAVY PVC PIPE RCP DENOTES REINFORCED CONCRETE PIPE G.S.I.P. DENOTES GRATED SURFACE INLET PIT J.P. DENOTES JUNCTION PIT NOTE: ALL PITS IN DRIVEWAYS TO HAVE HEAVY DUTY GRATE OR COVER EG. 3 X 150 DENOTES THREE (3) 150mm DIAMETER PIPES





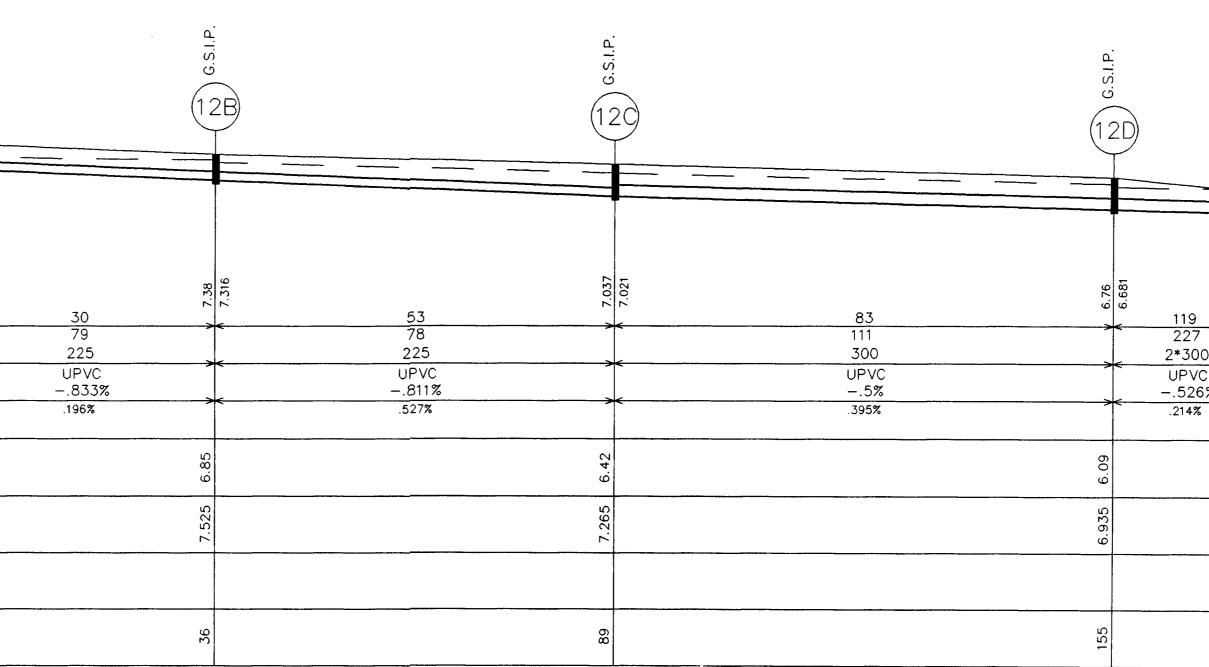
·		A A	J.P. J.P.
scharge (Lit/ apacity (Lit/ Pipe Size(mm) Pipe Class esign Grade iction Grade	s)	5 76 150 JPV(-8%	C
IVERT EVEL	8.7	8.5	8.42
URFACE EVEL	9.3	8.92	
OAD HAINAGE			
PE HAINAGE	0	2.5	
1	1.6	1	0

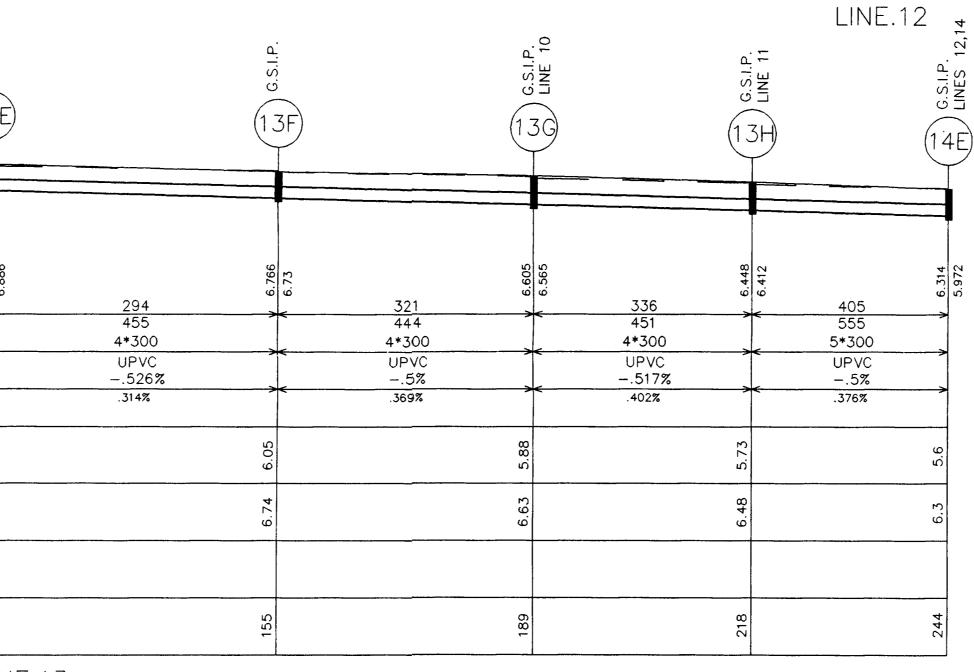

			C C C C C C C C C C C C C C C C C C C	$\left(\right)$	X FINE 7	
Discharge (Lit/s)	8 8 10 115 8 115 8 115 8 10 10 10 10 10 10 10 10 10 10	620.6 620.6 54	440.6 29 59	9.01	£26.8 ✓ 48 58	8.887
Capacity (Lit/s) Pipe Size(mm) Pipe Class	<150 UPVC	2*150 UPVC	59 3*150 UPVC		58 3*150 UPV0	
Design Grade Friction Grade	-1% .164% R.L.3.0	-1% .318%	<5319 .212%	~ >	515 .531%	%
INVERT ഈ LEVEL ∞	5	8.42		8.335		8.25
SURFACE R LEVEL	8.99	8.92		8.98		8.75
ROAD CHAINAGE						
PIPE CHAINAGE	ω	16		32		48.5

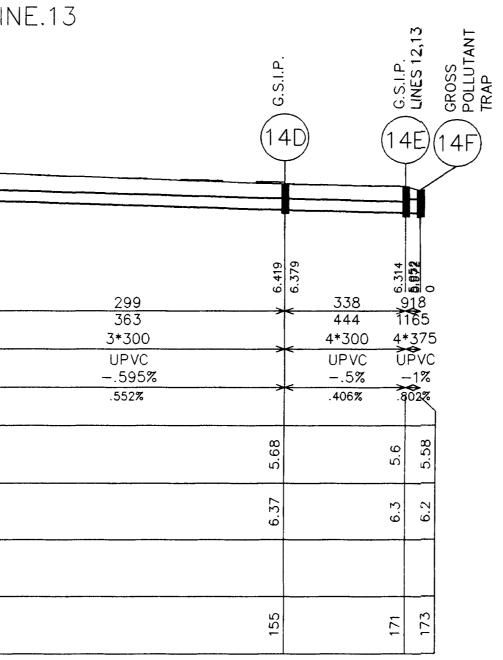


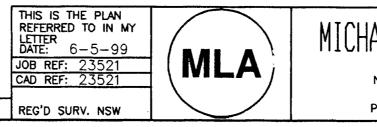
MICHAEL LOCKLEY & ASSOCIATES No.19 MASSEY STREET, GLADESVILLE 2111 P.O. BOX 400 GLADESVILLE, 1675 P.H. (02)9879 6077 FAX (02)9879 7143

DATE: 20/01/00 AMENDMENT: REVISED SITE LAYOUT REF: 24225

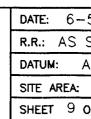

LINE.9


MINIMUM PIT SIZE DIMENSIONS


	MINIMUM DIMENSIONS (mm)	PIT NUMBERS
	450 X 450	1A 2A 3A 4A 5A 6A 6B 6C 7A 8A 9A 9B
	600 X 600	1B 1C 2B 2C 6D 9C
	900 X 600	2D 9D 9E 9F
	1200 X 900	9G 9H
DATE: 6-5-99	CLIENT: AUSTEXX DEVELOPME	NTS PTY LTD
IPD. NI/A	DRAINAGE LONG SECTIONS	
DATUM: AHD		
SITE AREA: N/A^2		
SHEET 8 OF 12 SHEETS	LGA: LAKE MACQUARIE	


d'I'S'S		G.S.I.P.	G.S.P.		CLINE 10	LINE 13 H LINE 13	d'is: 12A
Discharge (Lit/s) Capacity (Lit/s) Pipe Size(mm) Pipe Class Design Grade Friction Grade Friction Grade R.L. INVERT LEVEL SURFACE SURFACE EVEL PIPE CHAINAGE PIPE CHAINAGE	6 24 150 UPVC 8% .093% 1.0	Ca P P De Fri IN IN IN IN IN IN IN IN IN IN IN IN IN	scharge (Lit/s) pacity (Lit/s) ipe Size(mm) ipe Class sign Grade ction Grade R.L IVERT & EVEL '' URFACE & EVEL '' OAD HAINAGE IPE O HAINAGE	41 62 225 UPVC 526% .338% 0 89 9 9 9 9 9 9 9 9 9	55 139 300 UPVC 789% .188%	Discharge Capacity Pipe Siz Pipe Cla Design Gr Friction NVER LEVEL SURFA LEVEL ROAD CHAIN PIPE CHAIN	(Lit/s) e(mm) ss ade Grade R.L0 T CE CE CE C AGE
d.134	Λ.	- т. 13В		disse 130	13D)	d. I.S.B I.JE
	23 61 225 UPVC 5% .12% R.L0	X X 7.219 X X 7.201	80 122 2*225 UPVC 5% .318%		163 228 2*300 UPVC 529% .38%	202 444 4*300 UPVC 5% .159%	><
INVERT		28 7.48 6.7		64 7.2 6.52	81 7.11 6.43		117 6.935 6.25
)	-d-I-S-D (14E	3)				LIN diso 140
Discharge (Lit/s) Capacity (Lit/s) Pipe Size(mm) Pipe Class Design Grade Friction Grade R INVERT	117 124 2*225 UPVC 515% .637% .L0	X X 7.128			182 222 2*300 UPVC 5% .468%		6.651
LEVEL SURFACE SURFACE ROAD		7.08 6.33					6.68
CHAINAGE PIPE CHAINAGE		33			j (k		113
		DRA	AINAGE LONO VERT 1: HORIZ 1:	100		NE.14	DATE: 20/01/0

•



MICHAEL LOCKLEY & ASSOCIATES CONSULTING SURVEYORS & PLANNERS No.19 MASSEY STREET, GLADESVILLE 2111 P.O. BOX 400 GLADESVILLE, 1675 P.H. (02)9879 6077 FAX (02)9879 7143

DATE: 20/01/00 AMENDMENT: REVISED SITE LAYOUT REF: 24225

	2E)	ind 12F		:415.9 12G	G.S.I.P. 13, 14
+5°.9 7 00 √C 26% %	222 2*300 ↓ UPVC 5% .346%	× × 6.468 6.433	169 338 3*300 UPVC 517% .195%	× × × 6.376	184 423 2*375 UPVC 529% .149%
6.565 5.99		6.54 5.84		6.39 5.69	6.3
174		204		233	250

UPVC DENOTES SEWER GRADE EXTRA HEAVY PVC PIPE RCP DENOTES REINFORCED CONCRETE PIPE G.S.I.P. DENOTES GRATED SURFACE INLET PIT J.P. DENOTES JUNCTION PIT NOTE: ALL PITS IN DRIVEWAYS TO HAVE HEAVY DUTY GRATE OR COVER EG. 3 X 150 DENOTES THREE (3) 150mm DIAMTER PIPES

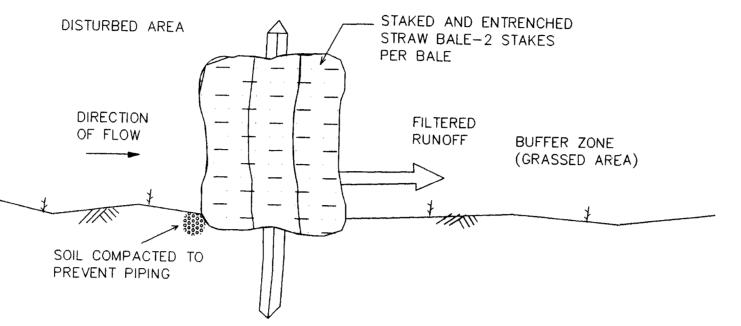
MINIMUM PIT SIZE DIMENSIONS

MINIMUM DIMENSIONS (mm)	PIT NUMBERS
600 X 600	10A 11A 11B 12A 12B 12C 13A 13B
900 X 600	12D 12E 13C 14A
1200 X 900	12F 12G 14B
1500 X 900	13D 13E 13F 13G 13H 14C 14D
2000 X 900	14E

-5-99	CLIENT: AUSTEXX DEVELOPMENTS PTY LTD
SHOWN	DRAINAGE LONGSECTION LINES 10 TO 14
AHD	
∴ N/A²	
OF 12 SHEETS	LGA: LAKE MACQUARIE

SOIL AND WATER MANAGEMENT

GENERAL NOTES


- 1 THIS PLAN IS TO BE READ IN CONJUNCTION WITH OTHER ENGINEERING PLANS AND ANY WRITTEN INSTRUCTIONS THAT MAY BE ISSUED
- 2 ALL SEDIMENT AND EROSION CONTROL DEVICES ARE TO BE INSTALLED AS SHOWN AND AS DIRECTED BY THE SITE SUPERVISOR THEY ARE TO BE INSTALLED PRIOR TO COMMENCEMENT OF CONSTRUCTION, ARE TO BE EFFECTIVELY MAINTAINED IN GOOD WORKING ORDER AND ARE TO BE REMOVED ONLY AFTER THE AREA HAS BEEN SATISFACTORILY REHABILITATED
- 3 THE POSITION AND EXTENT OF SOIL AND WATER MANAGEMENT DEVICES AS SHOWN IS INDICATIVE ONLY AND THE FINAL LOCATIONS SHALL BE DECIDED ON SITE VARIATIONS ARE PERMITTED IN ORDER TO BEST SUIT THE CIRCUMSTANCES
- 4 TOPSOIL FROM CONSTRUCTION AREAS IS TO BE STRIPPED AND STOCK-PILED FOR LATER REUSE IN SITE RESTORATION
- 5 ALL STOCKPILES OF ERODABLE MATERIAL ARE TO BE SURROUNDED BY STRAWBALES STAKED INTO THE GROUND
- 6 THE EXTENT OF CLEARING OF VEGETATION IS TO BE KEPT TO AN ABSOLUTE MINIMUM NECASSARY TO EFFECT THE WORKS
- 7 AREAS BEYOND WHICH DISTURBANCE WILL NOT BE PERMITTED SHALL BE SECURED WITH EXCLUSION FENCING
- 8 REVEGETATION MUST BE APPLIED TO ALL DISTURBED AREAS AS SOON AS PRACTICAL AFTER COMPLETION OF EARTHWORKS OR AS DIRECTED BY COUNCIL
- 9 ALL EXCAVATED TRENCH MATERIAL IS TO BE STOCKPILED ON THE UPHILL SIDE OF THE TRENCH
- 10 PROVIDE SEDIMENT BARRIERS (IE SANDBAGS OR STRAW BALES) UPSTREAM OF STORMWATER INLET PITS PRIOR TO THE ROAD SURFACE BEING PAVED AND THE LAND UPSLOPE BEING REHABILITATED PROVIDE KERB INLET SEDIMENT TRAPS AROUND ALL KERB INLET PITS ON FORMED ROADS
- 11 THE CONSTRUCTION ACCESS MUST BE KEPT FREE OF DEBRIS AND SPOIL
- 12 CONFORMITY WITH THIS PLAN WILL IN NO WAY REDUCE THE RESPONSIBILITY OF THE CONTRACTOR TO PROTECT AGAINST WATER DAMAGE DURING THE COURSE OF CONSTRUCTION
- 13 PROVIDE A STRIP OF TURF BEHIND ALL KERBS ONCE CONSTRUCTED
- 14 REASONABLE STEPS ARE TO BE TAKEN TO ABATE ANY DUST NUISANCE CAUSED BY CONSTRUCTION ALL HAUL ROADS AND CONSTRUCTION AREAS SHALL BE REGULARLY WATERED

STRAW BALE CONSTRUCTION DETAILS

WHERE USED ENSURE THEY ARE: BOUND WITH WIRE OR PLASTIC RATHER THAN TWINE PLACED LENGTHWISE IN ROWS, SINGLE OR TWIN, WITH STRAWS PARALLEL TO THE GROUND SURFACE

EMBEDDED INTO THE SOIL TO A DEPTH ON THE UPSLOPE SIDE OF AT LEAST 0.1 METRES

ANCHORED SECURELY TO THE GROUND BY TWO STAKES OR PICKETS DRIVEN THROUGH THE CENTRE

NOTE:

SILT FENCE CONSTRUCTION DETAILS

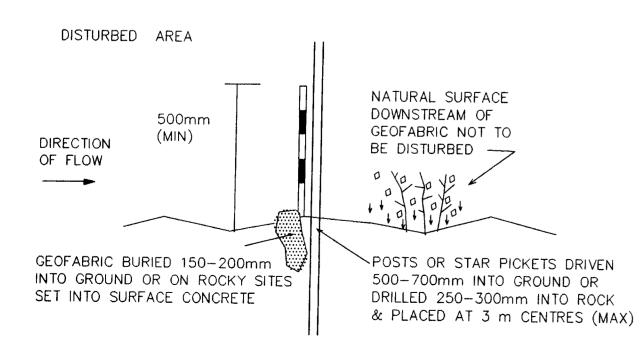
SILT FENCES ARE TO BE CONSTRUCTED AS FOLLOWS:

EXCAVATE A SMALL (150 TO 200 mm DEEP) TRENCH ALONG THE LINE OF THE FENCE, ENSURING ANY LOOSE SPOIL IS DEPOSITED ON THE UPSLOPE SIDE INSTALL A PLAIN WIRE FENCE DOWNSLOPE OF THE TRENCH, WITH POSTS (OR STAR PICKETS) A MAXIMUM OF 2 METRES APART AND DRIVEN AT LEAST 500 TO 700 mm INTO THE GROUND

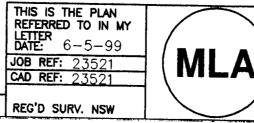
WHERE NECESSARY FOR ADDITIONAL FABRIC SUPPORT, STAPLE WIRE MESH TO THE FENCE

ATTACH GEOFABRIC TO THE FENCE ENSURING:

-THE BASE IS BURIED AT LEAST 200 mm IN THE GROUND ON THE UPSLOPE SIDE -HEIGHT ABOVE THE GROUND LESS THAN 700 mm

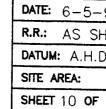

-ANY JOINTS OVERLAP A MINIMUM 300 mm AND ARE EITHER SEWN OR SECURELY ATTACHED TO A POST (OR STAR PICKET), AND -THE ENDS ARE SECURELY FASTENED TO A POST (OR STAR PICKET)

SUITABLE GEOFABRIC:


TYPAP 3207

TERRAM 500 NON-WOVEN (FELT) BIDIM U14 PR0-PEX 4545

POLYWEAVE F - WOVEN


SEE DETAIL PLANS AND SITE PLAN FOR LOCATION OF DEVICES

•

.•

MICHAEL LOCKLEY & ASSOCIATES CONSULTING SURVEYORS & PLANNERS No.3 COWELL STREET (P.O. BOX 400) GLADESVILLE, 2111 P.H. 9879 6077 DX 554 SYDNEY

-99	CLIENT: AUSTEXX DEVELOPMENTS PTY LTD
HOWN	SOIL & WATER MANAGEMENT DETAILS
.D	
2	1
T 12 SHEETS	LGA: LAKE MACQUARIE

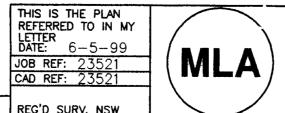
	HYDROLOGICAL DESIGN SHEET													ΕT									
PIT	LAND USE	FLOW LENGTH	SLOPE	"u	TIME	TIME	INTENSITY	FRACTION IMPERVIOUS	COEFF	AREA	C.A	SUM AREA	o	BY PASS	TOTAL FLOW	GUTTER SLOPE	FLOW WIDTH	ріт түрЕ	LINTEL	INFLOW	BY FLOW	ВҮ РІТ	KINEMATIC MIN TIME 5 MAX TIME 20 LAKE MACQUARIE REMARKS
		m	%		min	min	mm/	h		ha	ha	ha	L/s	L/s	L/s	%	m		m	L/s	L/s		
1A	1	10	2	.011	.637	5	158 10Yr	950	.876	.006	.006	.006	3		3			4		3		1B	
1B	1	18	2	.011	.929	5	158 10Yr	950	.876	.013	.011	011	E		E					_			
1C	1	15	2	.011	.825	5	158 10Yr	950	.876	.018	.016	.011	5		5			4		5		1C	
2A	1	20	1	.011	1.247	5	158 10Yr	950	.876	.032	.028	.028	12		12			4		12		2C 2B	
2B	1 2	25 5	1 4	.011 .250	2.272		158	950 2	.876 .519	.023 .009	.020 .005												
2C	1	40	1	.011	1.982	5	10Yr 158	950	.876	.066	.058	.025	11		11			4		11		2C	
2D	1	15	3	.011	.725	5	10Yr 158 10Yr	950	.876	.019	.017	.058 .017	25 7	7	25 14			4		19 14	7	2D 9G	
3A	1	28	2	.011	1.239	5	158 10Yr	950	.876	.044	.039	.039	, 17		17			4		17		90 9F	
4A	1	25	1	.011	1.446	5	158 10Yr	950	.876	.014	.012	.012	5		5			4		5		9E	
5A	1	16	2	.011	.860	5	158 10Yr	950	.876	.020	.018	.018	8		8			4		8		6D	
6A	1	23	2	.011	1.089	5	158 10Yr	950	.876	.035	.031	.031	13		13			4		13		6B	
6B	1	23	2	.011	1.089	5	158 10Yr	950	.876	.024	.021	.021	9		9			4		9		6C	
6C	1	23	2	.020	1.618	5	158 10Yr	950	.876	.020	.018	.018	8		8			4		8		6D	
6D	1	23	2	.011	1.089	5	158 10Yr	950		.029	.025	.025	11		11			4		11		9D	
7A	1	9	1	.011		5	158 10Yr	950		.003	.003	.003	1		1			4		1		9D	
88	1	19	1	.011		5	158 10Yr	950		.013	.011	.011	5		5			4		5		9B	
9A	1	43	1		2.081	5	158 10Yr	950		.022	.019	.019	8		8			4		8		98	
9B 9C	1	50	1	.011	2.305	5	158 10Yr	950	.876	.042	.037	.037	16		16			4		16		9D	
						5	158 10Yr											5					
9Х						5	158 10Yr											5					
9D	1	10	5	.011	.479	5	158 10Yr	950		.005	.004	.004	2		2			4		2		9E	
9E	1	15	2	.011	.825	5	158 10Yr	950		.006	.005	.005	2		2			4		2		9F	
9F 9G	1	24 25	2	.011	1.119 1.446	5	158 10Yr	950 950		.034	.030	.03	13		13			4		13		9G	
						5	158 10Yr					.026	12		12			4		12		9Н	
9Н	1	6	1	.011	.575	5	158 10Yr	950	.876	.003	.003	.003	1		1			4		1		91	

HYDRAULIC DESIGN SHEET

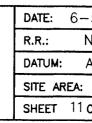
TIG	TIME	INTENSITY	AREAS	FLOW	LENGTH	DIAMETER	GRADE	H.G.L.GRADE	VEL Q/A	×	HEAD LOSS	VEL CAP	PIPE VEL	PIPE CAP	PIPE TIME	C.W.= .0000 MAX TIME 20 LAKE MACQUARIE BY PASS=Q AREA=SUM.CA REMARKS
	min	mm/h	- ha	L/s	m	mm	%	%	m/s		m	m/s	m/s	L/s	min	
LINE 1 1A-1B	5	158 10Yr	.047 X.041	21	9.5	149	2.737	.815	1.179	3	.213	2.582	2.52	45	.06	
1B-1C	5.1	157 10Yr	.058	25	10.5	233	1.905	.138	.597	.8	.015	2.808	2.22	120	.08	
1C-2C	5.1	156 10Yr	.074	32	14	233	1.929	.211	.755	.8	.023	2.825	2.39	120	.1	
LINE 2 2A-2B	5	15 8 10Yr	.028	12	17.5	149	1.6	.323	.708	3	.077	1.974	1.81	34	.16	
2B-2C	5.2	156 10Yr	.088 X.035	38	40	233	1	.291	.9	.9	.037	2.034	1.97	87	.34	
2C-2D	5.5	153 10Yr	.22	94	12.5	233 X2	1.04	.417	1.097	1.6	.098	2.075	2.1	177	.1	
2 D -9G	5.6	152 10Yr	.283 X.047	120	23.5	233 X2	1.021	.657	1.405	1.6	.161	2.056	2.21	175	.18	
LINE 3 3A-9F	5	158 10Yr	.039	17	9	149	1.778	.574	.973	3	.145	2.081	2.04	36	.07	
LINE 4 4A-9E	5	158 10Yr	.012	5	16	149	1.25	.073	.31	3	.015	1.745	1.31	30	.2	
LINE 5 5A-6D	5	158 10Yr	.018	8	19	149	.632	.138	.442	3	.03	1.24	1.13	22	.28	
LINE 6 6A-6B	5	158 10Yr	.031	13,	. 9	149	.667	.379	.774	3	.092	1.274	1.33	22	.11	
6 B -6C	5.1	157 10Yr	.052	23	4	149	.75	.967	1.295	.6	.051	1.352	1.53	24	.04	
6C-6D	5.2	156 10Yr	.069	30	18.5	233	.595	.188	.707	2.2	.056	1.569	1.52	67	.2	
6D-9D	5.4	154 10Yr	.112	48	33	233	.879	.44	1.13	.5	.033	1.907	1.98	81	.28	
LINE 7 7A–9X	5	158 10Yr	.047 X.044	21	2	149	25.75	.813	1.177	2.5	.177	7.919	5.68	138	.01	
LINE 8 8A-9C	5	158 10Yr	.011	5	2.5	149	8	.064	.288	2.5	.011	4.414	2.49	77	.02	
LINE 9 9A-9B	5	158 10Yr	.019	8	8	149	1	.164	.487	2.5	.03	1.561	1.37	27	.1	
9B-9C	5.1	157 10Yr	.056	25	8	149 X2	1	.318	.703	.9	.023	1.561	1.52	54	.09	
9C-9X	5.2	156 10Yr	.067	29	16	149 X3	.531	.212	.561	.6	.01	1.137	1.13	60	.24	
9X-9D	5.4	153 10Yr	.114	49	16.5	149 X3	.515	.531	.933	.8	.036	1.12	1.25	59	.22	
9D-9E	5.6	151 10Yr	.231	97	8.5	233 X2	.588	.448	1.14	2	.133	1.56	1.7	133	.08	
9E-9F	5.7	151 10Yr	.263 X.015	110	29	233 X2	.517	.565	1.294	.6	.051	1.463	1.65	125	.29	
9F-9G	6	148 10Yr	.341 X.01	141	10	293 X2	.5	.29	1.043	.8	.044	1.647	1.74	222	.1	
9G-9H	6.1	147 10Yr	.651	267	8	293 X3	.625	.444	1.318	.8	.071	1.841	2	372	.07	
9H9I	6.2	146 10Yr	.686 X.032	280	5	293 X3	1	.486	1.383	.8	.078	2.329	2.42	471	.03	

HYDROLOGICAL DESIGN SHEET

	·	F	· ····	· · · · · · · · · · · · · · · · · · ·		r			·														
PIT	LAND USE	FLOW LENGTH	SLOPE	۲ ۲	TIME	TIME	INTENSITY	FRACTION	COEFF	AREA	C.A	SUM AREA	a	BY PASS	TOTAL FLOW	GUTTER SLOPE	FLOW WIDTH	ριτ τΥΡΕ	LINTEL	INFLOW	BY FLOW	вү ріт	KINEMATIC MIN TIME 5 MAX TIME 20 LAKE MACQUARIE REMARKS
		m	%		min	min	mm/			ha	ha	ha	L/s	L/s	L/s	%	m		m	L/s	L/s		
10A	1	20	1	.011	1.247	5	158 10Yr	950	.876	.016	.014	.014	6		6			4		6		11B	
11A	1	50	1	.011	2.305	5	158 10Yr	950	.876	.108	.095	.095	42		42			4	-	19	23	11B	
11B	1	30	1	.011	1.633	5	158 10Yr	950	.876	.024	.021	.021	9	23	32			4		19	13	13H	
12A	1	50	1	.011	2.305	5	158 10Yr	950	.876	.080	.070	.07	31		31			4		19	12	12B	
12B	1	36	.8	.011	1.990	5	158 10Yr	950	.876	.061	.053	.053	24	12	36			4		19	17	120	
12C	1	53	.5	.011	3.037	5	158 10Yr	950	.876	.087	.076	.076	34	17	50			4		19	32	120	
12D	1	65	.5	.011	3.494	5	158 10Yr	950	.876	.110	.096	.096	42	32	74			4		19	55	120 12E	
12E	1	35	.5	.011	2.289	5	158 10Yr	950	.876	.107	.094	.094	41	116	157			4		19	138	12E	
12F	1	27	.5	.011	1.921	5	158 10Yr	950	.876	.049	.043	.043	19	138	157			4		19	138	12G	
12G	1	30	.5	.011	2.062	5	158 10Yr	950	.876	.052	.046	.046	20	138	158			4		19	140	14E	
13A	1	24	5	.011	.832	5	158 10Yr	950	.876	.061	.053	.053	24		24			4		19	5	13B	
13B	1	28	1.5	.011	1.363	5	158 10Yr	950	.876	.070	.061	.061	27	5	32			4		19	13	13D	
13C	1	36	.8	.011	1.990	5	158 10Yr	950	.876	.090	.079	.079	35	13	48			4		19	29	13D	
13D	1	17	.5	.011	1.409	5	158 10Yr	950	.876	.043	.038	.038	17	29	45			4		19	23	13E	······································
13E	1	36	.5	.011	2.333	5	158 10Yr	950	.876	.090	.079	.079	35	27	61			4		19	43	13F	
13F	1	38	.5	.011	2.420	5	158 10Yr	950	.876	.095	.083	.083	37	43	79			4		19	60	12E	
13G	1	28	.5	.011	1.968	5	158 10Yr	950	.876	.061	.053	.053	24		24			4		19	5	13H	
13H	1	30	.5	.011	2.062	5	158 10Yr	950	.876	.070	.061	.061	27	18	45			4		19	26	14E	
14A	1	34	3.5	.011	1.171	5	158 10Yr	950	.876	.027	.024	.024	10		10			4		10		14B	
14B	1	33	.5	.011	2.199	5	158 10Yr	950	.876	.023	.020	.02	9		9			4		9		14D	
14C	1	80	.5	.011	4.035	5		950	.876	.056	.049	.049	22		22			4		19	3	14C	
14D	1	42	.5	.011	2.591	5	158 10Yr	950	.876	.127	.111	.111	49	3	52			4		19	33	14D	
14E	1	23	.5	.011	1.724	5		950	.876	.051	.045	.045	20	199	219			4		19	200	14E	


HYDRAULIC DESIGN SHEET

PIT	TIME	INTENSITY	AREAS	FLOW	LENGTH	DIAMETER	GRADE	H.G.L.GRADE	VEL Q/A	¥	HEAD LOSS	VEL CAP	PIPE VEL	PIPE CAP	PIPE TIME	C.W.= .0000 MAX TIME 20 LAKE MACQUARIE BY PASS=Q AREA=SUM.CA REMARKS
	min	mm/h	r ha	L/s	m	mm	%	%	m/s		m	m/s	m/s	L/s	min	
LINE 10 10A-11B	5	158 10Yr	.014	6	30	149	.8	.093	.354	2.4	.015	1.396	1.16	24	.43	
LINE 11 11A-11B	5	158 10Yr	.095	42	19	233	.526	.338	.977	3	.146	1.476	1.57	63	.2	
11B-13H	5.4	153 10Yr	.13	55	19	293	.789	.188	.822	1	.034	2.069	1.95	140	.16	
LINE 12 12A-12B	5	158 10Yr	.07	31	36	233	.833	.196	.724	3	.08	1.857	1.74	79	.34	
12B-12C	5.3	154 10Yr	.124	53	53	233	.811	.527	1.246	.8	.063	1.832	1.97	78	.45	
12C-12D	5.8	150 0Yr	.2	83	66	293	.5	.395	1.237	.2	.016	1.647	1.8	111	.61	
12D-12E	6.4	144 10Yr	.296	119	19	293 X2	.526	.214	.884	2	.08	1.69	1.7	228	.19	
12E-12F	6.6	143 10Yr	.39	155	30	293	.5	.346	1.151	1	.068	1.647	1.78	222	.28	
12F-12G	6.9	141 (0Yr	.433	170	29	X2 293 X3	.517	.195	.839	1	.036	1.675	1.67	339	.29	
12G-14E	7.2	138 10Yr	.478	185	17	372	.529	.149	.849	1	.037	1.95	1.88	424	.15	
		.011				X2										
LINE 13 13A-13B	5	158 10Yr	.053	24	28	233	.5	.12	.552	3	.047	1.439	1.34	61	.35	
13B-13C	5.3	154 10Yr	.188 X.073	81	36	233 X2	.5	.318	.947	.4	.018	1.439	1.53	123	.39	
13C-13D	5.7	150 10Yr	.39 X.123	163	17	293 X2	.529	.38	1.211	.5	.037	1.695	1.84	229	.15	
13D-13E	5.9	149 10Yr	.488 X.061	203	36	293 X4	.5	.159	.751	1	.029	1.647	1.6	444	.38	
13E-13F	6.3	146 10Yr	.725 X.158	294	38	293 X4	.526	.314	1.091	.2	.012	1.69	1.79	456	.35	
13F13G	6.6	143 10Yr	.808	321	34	293 X4	.5	.369	1.191	.5	.036	1.647	1.79	444	.32	
13G-13H	6.9	140 10Yr	.862	337	29	293 X4	.517	.402	1.248	.5	.04	1.675	1.83	452	.26	
13H-14E	7.2	138 10Yr	1.053	405	26	293 X5	.5	.376	1.202	.5	.037	1.647	1.79	555	.24	
LINE 14 14A–14B	5	158 10Yr	.268 X.244	118	33	233 X2	.515	.637	1.382	3	.292	1.46	1.66	125	.33	
14B-14C	5.3	154 10Yr	.425 X.137	183	80	293 X2	.5	.468	1.356	.5	.047	1.647	1.83	222	.73	
14C-14D	6.1	147 10Yr	.73 X.256	300	42	293 X3	.595	.552	1.482	.5	.056	1.797	2	363	.35	
14D-14E	6.4	144 10Yr	.841	338	16	293 X4	.5	.406	1.255	.5	.04	1.647	1.81	444	.15	
14E-14F	7.4	136 10Yr	2.417	919	2	372 X4	1	.802	2.114	1.5	.342	2.68	2.96	1165	.01	


1 IN 10 YEAR DESIGN STORM USED FOR CALCULATIONS PIT TYPE 4=GRATED SURFACE INLET PIT

PIT TYPE 5=JUNCTION PIT

REFERRED TO IN MY LETTER DATE: 6-5-99	
JOB REF: 23521	
CAD REF: 23521	
REC'D SURV NSW	


MICHAEL LOCKLEY & ASSOCIATES No.19 MASSEY STREET, GLADESVILLE 2111 P.O. BOX 400 GLADESVILLE, 1675 P.H. (02)9879 6077 FAX (02)9879 7143

DATE: 20/01/20 AMENDMENT: REVISED SITE LAYOUT REF: 24225 REG'D SURV. NSW

-	
•	

6-5-99	CLIENT: AUSTEXX DEVELOPMENTS PTY LTD
N/A	DRAINAGE CALCULATION SHEETS
AHD	
A: N/A ²	
11 OF 12 SHEETS	LGA: LAKE MACQUARIE

APPENDIX D

COUNCIL FLOOD CERTIFICATE Ref: 1352, Dated: 19 December 2018

19 December 2018

Maria Sereti c/- COSTIN ROE CONSULTING PTY LTD Level 1, 8 Windmill St WALSH BAY NSW 2000 Our Ref: 1352 Your Ref: ABN 81 065 027 868

FLOOD CERTIFICATE

 Fee Paid:
 520.00

 Receipt No:
 10157920

DESCRIPTION OF LAND

Address:

Bunnings Hardware, 393 Pacific Highway, BELMONT NORTH NSW 2280

Lot 101 DP 1021186

County:

Lot Details:

Northumberland

G D Jones

Senior Sustainability Officer (Natural Disaster Management)

For:

MORVEN CAMERON CHIEF EXECUTIVE OFFICER

LMCC

126-138 Main Road Speers Point NSW 2284 Box 1906 Hunter Region Mail Centre NSW 2310 ABN: 81 065 027 868 T 02 4921 0333 F 02 4958 7257 E council@lakemac.nsw.gov.au Page 1 of 8

www.lakemac.com.au
 www.facebook.com/lakemaccity

ywww.twitter.com/lakemac

The following information is provided from the records of the Council pursuant to the Local Government Act 1993 in response to your request for details relating to affectation of the above land by flooding.

Levels shown are in metres on Australian Height Datum (AHD). Refer to attached Flood Information Sheet attached for information on the AHD.

Likelihood of land being flooded

The likelihood of the land and buildings thereon being flooded can be assessed from the following information:-

1. Highest observed flood over or adjacent to the land:

Not applicable

NOTE: Applicants are advised that where highest observed historic flood levels are stated, this data may not have been observed by Council, but may be the result of local information and, therefore applicants may consider it advisable to carry out their own investigations.

2. Information derived from Flood Study (where available):

Note: Site development was controlled by an approved Strormwater Management Plan for the site via development application consent No. 1634/1999

Council Reference: Old TCS/Legacy Document TCS1722612 D 99/1634 Prop Subdivision & Site Fill & Drainage Plans Psrt 2 - 23/02/2000

1 in 100 year probable flood level	See above
1 in 20 year probable flood level	N/A

Probable Maximum Flood level (PMF) N/A

3. Existing ground levels at site:

See Detail Survey Plan on page 7 below.

- 4. Existing Bunnings Warehouse building floor level: ... 7.56m AHD
- 5. Existing Garden Centre floor level: ... 7.47m AHD

Flood Planning Levels

Flood Planning Levels and floor height requirements in areas affected by flooding (Council resolution dated 20 August, 1984) excluding those properties shown affected in the *Lake Macquarie Waterway Flood Study* and *Flood Risk Management Study and Plan (June 2012).*

Development Type (including extensions)	Minimum Height Requirements
Dwellings	
Habitable rooms	1 in 100 year probable flood level plus 500mm freeboard or 500mm above the highest observed flood level if no probable flood level is available.
Non-habitable rooms and garages	1 in 20 year probable flood level or at the highest observed flood level if no probable flood level is available.
Carports, boat sheds, garden sheds, and other ancillary structures (excluding garages)	No requirement.
Unsealed electrical installations	1 in 100 year probable flood level plus 500mm freeboard or 500mm above the highest observed flood level if no probable flood level is available.
Medium and High Density residential development	ent
Habitable rooms	1 in 100 year probable flood level plus 500mm freeboard or 500mm above the highest observed flood level if no probable flood level is available.
Non-habitable rooms and garages	1 in 20 year probable flood level or at the highest observed flood level if no probable flood level is available.
Carports, boat sheds, garden sheds, and other ancillary structures (excluding garages)	No requirement.
Basement car parking	Constructed to preclude entry of floodwater at levels up to the 1 in 100 year probable flood level plus 500mm freeboard. Additional requirement for basement levels to implement a failsafe means of evacuation, and a pump-out system to remove floodwaters.
Unsealed electrical installations	1 in 100 year probable flood level plus 500mm freeboard or 500mm above the highest observed flood level if no probable flood level is available.

Development Type (including extensions)	Minimum Height Requirements
Commercial and Retail -	
* NOTE: Flood Planning Levels for "Commercial and restaurants, clubs, entertainment facilities, warehous	
Internal floor height	1 in 100 year probable flood level plus 500mm freeboard or 500mm above the highest observed flood level if no probable flood level is available.
Basement car parking.	Constructed to preclude entry of floodwater at levels up to the 1 in 100 year probable flood level plus 500mm freeboard.
	Additional requirement for basement levels to implement a failsafe means of evacuation, and a pump-out system to remove flood waters.
Unsealed electrical installations	1 in 100 year probable flood level plus 500mm freeboard or 500mm above the highest observed flood level if no probable flood level is available.
Mixed Use development	
Internal floor height	1 in 100 year probable flood level plus 500mm freeboard or 500mm above the highest observed flood level if no probable flood level is available.
Basement car parking	Constructed to preclude entry of floodwater at levels up to the 1 in 100 year probable flood level plus 500mm freeboard.
	Additional requirement for basement levels to implement a failsafe means of evacuation, and a pump-out system to remove flood waters.
Unsealed electrical installations	1 in 100 year probable flood level plus 500mm freeboard or 500mm above the highest observed flood level if no probable flood level is available.
Industrial	J
Internal floor height	At or above the 1 in 100 year probable flood level or at the highest observed flood level if no probable flood level is available.
Unsealed electrical installations	1 in 100 year probable flood level plus 500mm freeboard or 500mm above the highest observed flood level if no probable flood level is available.

Development Type (including extensions)	Minimum Height Requirements
Sensitive Uses (Residential care facilities, hos	pitals, etc.)
Internal floor height	Probable maximum flood level.
Unsealed electrical installations	Probable maximum flood level.

6. Applications for approval of/consent to major additions, or relocation of existing buildings, will be required to observe the relevant floor height (Flood Planning Level) adopted by Council at the time the development proposal is considered by Council.

Applications for minor additions or alterations to existing development will be assessed on the merits of the situation, having regard to meeting an acceptable level of risk of flood damage.

7. Filling

Filling the subject land would require Council's consent.

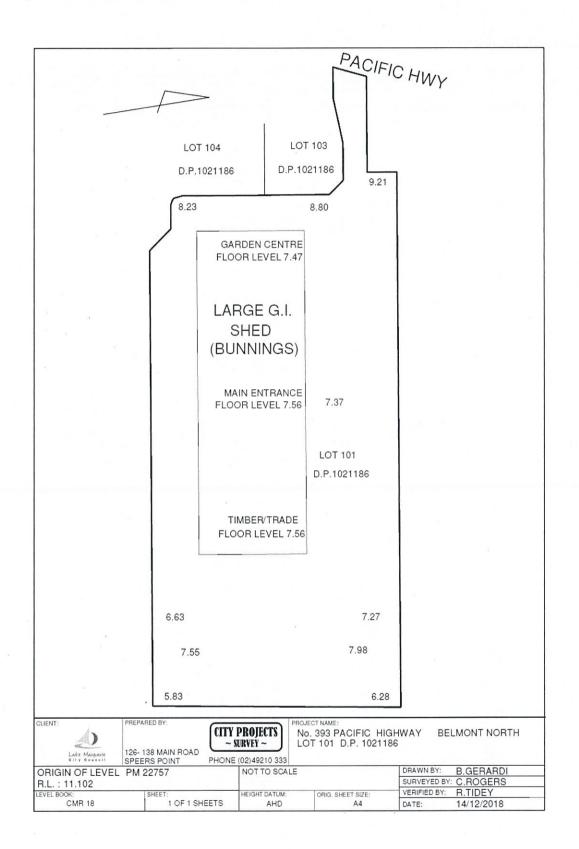
Filling of flood affected land may have an impact on the nature and extent of flooding downstream or on neighbouring land and generally is not favoured as a planning response on flood prone land.

Any use of fill associated with development must not substantially impede flow of floodwaters and must not contribute to flooding or ponding of water on any other property.

8. Exempt and complying development in the Flood Planning Area

Development on a flood control lot would need to comply with conditions as defined in SEPP (Exempt and Complying Development) 2008.

9. Other development conditions and approvals


Development approval/consent for this property is dependent on a range of issues, including compliance with all relevant provisions of Lake Macquarie Local Environmental Plan 2014 (LMLEP 2014), Lake Macquarie Development Control Plan (LMDCP) 2014, as well as Lake Macquarie Development Control Plan 2014 – Revision 19, adopted by Council 25 June 2018.

Copies of these documents and further information in regard to development on this property can be obtained from Council's website. Compliance with these flood requirements does not guarantee Council will approve development on this property.

10. Development where 100 year probable ARI levels are not available, and which could be flood liable, must be designed to meet an acceptable level of risk from flood damage. This may require the preparation of a Local Flood Study that considers cumulative impact issues, and demonstrates negligible impacts on other lands.

Further Information

11. This certificate considers the relevant flood and flood planning levels for the specific property. There may be other issues to do with flooding, sea level rise, filling, and emergency access and egress that are not addressed in this document.

Attachment to Certificate - Flood Explanation Sheet

1 in 100 year Probable Flood Level

The 1 in 100 year flood is one that has a 1% chance of occurring in any year, or has the chance of occurring once every 100 years. The term "100-year flood" is a statistical probability designation stating there is a 1-in-100 chance that a flood this size will happen during any year. Another interpretation could be the "1-in-100 chance flood". The I in 100 year flood does not mean that if a location floods one year, it will definitely not flood for the next 99 years. Nor, if it has not flooded for 99 years, will it necessarily flood this year. Some parts of Australia have received more than one 1 in 100 year flood in one decade. Lake Macquarie waterway (the Lake) has not experienced a 1 in 100 year flood since written records began 150 years ago.

The 1 in 100 year flood is a serious but infrequent event, and is used widely as the risk threshold for flood planning.

1 in 20 year Probable Flood Level

The 1 in 20 year flood is one that has a 5% chance of occurring in any year, or has the chance of occurring once every 20 years. This is a statistical probability, and does not mean that if a location floods one year, it will definitely not flood for the next 19 years.

The 1 in 20 year flood is less serious but more frequent than the 1 in 100 year flood.

Flood Planning Level (FPL)

The Flood Planning Level is the risk threshold set for new buildings in flood-affected areas, and is usually applied as a minimum floor level. It is commonly based on the 1% (1-in-100 year) flood level plus 'freeboard' (see below).

Freeboard

Freeboard is included in the Flood Planning Level to allow a safety margin for unpredictable factors such as waves, localised hydraulic effects, blockages, flood debris, and uncertainties in the computer flood modelling. A freeboard of 500mm is typically applied to the 1-in-100 year flood for residential / commercial developments (see page 3 – Flood Planning Levels).

Probable Maximum Flood (PMF)

The Probable Maximum Flood is the largest flood that could feasibly occur. However, it is an extremely rare event. Despite this, some floods in Australia have approached the PMF. Council provides the PMF level on this Flood Certificate, if it is available, to indicate the full extent of risk, even if the chance is very small. Essential services (such as hospitals) and retirement housing, are required to locate above the PMF to avoid any risk from flooding.

Australian Height Datum (AHD)

Australian Height Datum refers to the elevation relative to a reference point. In Australia this reference point approximates mean sea level, which is taken as 0.00metres AHD. Flood levels, ground levels, floor levels, and flood planning levels are shown in metres AHD.